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Online platforms often do not directly control users’ pricing strategy, instead offering analytics

and other information to help steer user behavior. I study the role of information provision

by an auction platform using data from eBay auctions of children’s toys. I show that as new

sellers gain more experience they set lower reserve prices, earn higher revenues, and attract

more bidders. I develop a model of selective platform participation where new sellers learn to

set reserve prices through repeated transactions. I provide conditions under which new sellers’

beliefs about the effect of reserve prices on bidder arrival are semiparametrically identified. In

a dataset of eBay auctions for children’s toys, estimates of the learning model suggest that new

sellers underestimate the effect of high reserve prices on deterring bidder entry. Counterfactual

simulations indicate that platform and seller profits improve, and more bidders enter, when the

platform can shift new sellers’ beliefs toward the true parameters.
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1 Introduction

Two-sided platforms help buyers and sellers transact by both providing a marketplace and accom-

panying infrastructure to successfully match users. However, these firms play a limited role in the

decision problem of sellers that use their site: individual users choose which items to sell, as well as

how to price and promote their listings within the platform’s interface. Despite this decentralized

approach to on-site transactions, many platforms provide information to sellers to help them track

and optimize their business (e.g., eBay Seller Hub, Amazon Seller Central, AirBnB Smart Pricing,

Walmart Seller Academy). This information directly affects sellers’ strategic decisions, since sellers

may be uninformed or uncertain about how to maximize profits in a new setting.

In this paper, I study an auction platform’s problem of optimal information provision when

sellers face uncertainty about their expected profits. I first document seller learning in a large,

rich dataset of eBay auctions, implying sellers may benefit from additional information about the

auction process. To study the underlying features of the platform, I combine a seller learning

model with the two-sided auction platform model from Marra (2019). In this setting, sellers face

a tradeoff between extracting surplus from existing bidders and attracting more bidders through

lower reserve prices. I characterize the optimal reserve price of a fully informed, profit-maximizing

seller and show that it generalizes the reserve price of Myerson (1981) to a setting with endogenous

auction entry. When sellers are learning about bidders’ entry process, however, their choice of

reserve price varies with their beliefs. I provide conditions under which new sellers’ beliefs are

semiparametrically identified, and I estimate the auction platform model using debiased machine

learning.

The question of optimal information provision is central to the platform’s strategic problem.

Within the marketplace, sellers face a problem similar to a standard monopoly pricing problem

(Bulow and Klemperer 1996). In this context, the demand faced by each individual seller is deter-

mined by both how many bidders enter each auction and how much those who enter value the item

being sold. Sellers must therefore know both the bidder entry process and the distribution of bid-

der valuations to maximize profits from the items they list. If sellers have incomplete information

about their demand curve, the platform may wish to correct sellers’ beliefs and benefit from their
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more informed choices. However, the platform may benefit from information asymmetries among

its users just as it may benefit from setting different fees on both sides of the market (Rochet and

Tirole 2003). Thus, sellers’ beliefs and learning about the arrival process–and the platform’s role

in influencing these beliefs–shape outcomes for sellers, bidders, and the platform itself.

This analysis is motivated by empirical patterns in a large dataset of eBay auctions for children’s

toys from before the introduction of eBay’s Seller Hub. I demonstrate that new sellers set higher

reserve prices and earn lower revenues than their more experienced counterparts. There is evidence

that is suggestive of both selection and learning among new sellers. First, new sellers that remain

on the platform set lower prices and earn higher revenues in their first auctions than new sellers

that list a few items and then exit. Restricting attention to sellers that remain on the platform

reveals the same pattern: new sellers lower their reserve prices and increase revenues as they gain

more experience.

Reduced-form evidence alone, however, cannot disentangle how much of sellers’ pricing behavior

is attributable to selection and how much is due to seller learning. This is because both sellers’

beliefs and their private valuations for an item affect their choice of reserve price. By explicitly

modeling the arrival and decision process of both bidders and sellers, I characterize key features

of the auction platform that drive seller behavior. In particular, high reserve prices reduce the

expected benefit to bidders of entering auctions, which leads to lower entry. I show that sellers can

overcome this by setting a reserve price that balances the standard “surplus extraction” motive

of Myerson (1981) against the “bidder attraction” motive inherent to the platform game. This

provides theoretical justification for the lower reserve prices set by more experienced sellers. Further,

bias in seller beliefs about bidders’ entry process may cause sellers to incorrectly conclude that it

is unprofitable to list certain items for auction. I model how beliefs affect seller behavior on

both the intensive margin (through reserve prices) and on the extensive margin (through selective

entry).

In order to quantify the effect of information on seller actions, I show seller beliefs about

bidders’ entry process are semiparametrically identified from choice data within a single period. I

highlight similarities between the identification of individual beliefs and the identification of random

coefficients models (Fox et al. 2012), and show how variation in sellers’ choice of reserve price traces
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out sellers’ beliefs about their profit function. I also propose a likelihood approach to estimate

bidder values, their arrival process, and heterogeneity in item values. This approach solves two

key challenges in my setting. First, since these are ascending auctions, the distribution of observed

bids is higher (in a first-order stochastic dominance sense) than the true bidder value distribution.

I address this by explicitly modeling the arrival process and its influence on the distribution of the

highest observed bids. Second, each item is characterized by its auction title, which is written by

the seller. Since the set of possible item titles is extremely high dimensional, I embed deep neural

networks within the likelihood model to flexibly estimate item-level heterogeneity along with high-

level parameters such as the bidder arrival process. However, this approach can lead to significant

bias in the estimated parameters of interest due to over-fitting the model to the data. In line

with the literature on debiased machine learning (Farrell, Liang, and Misra 2020; Chernozhukov

et al. 2022; Ichimura and Newey 2022), I derive a Neyman-orthogonal score and use it to estimate

the auction model. Thus, I obtain asymptotically consistent estimates of the model parameters

despite the large dimension of the dataset.

My estimates illustrate the importance of several underlying features of the model. Bidders

face a non-trivial time cost of entering each auction and inspecting the listing. Consistent with

the model, this means higher reserve prices have a strong negative effect on the expected number

of bidders. This effect is distinct from the mechanical effect of increasing the public reserve price,

which excludes potential bidders from submitting a bid even if they enter the auction. New sellers

underestimate the bidder-deterrence effect, but among those that continue to list items for auction,

sellers soon set prices that are broadly consistent with accurate beliefs about the bidder arrival

process.

These results have important strategic implications for the platform and its decision of how

much information to provide. The platform can choose to provide new sellers with data from past

auctions, from which they can learn about the true bidder entry process. At the same time, the

platform chooses what percentage of revenue it will charge from both new and experienced sellers,

who are already familiar with the bidder arrival process and set prices optimally. My estimates

quantify how much and in what direction new sellers will adjust their beliefs about the bidder entry

process in response to new information. When provided with a random sample of other auctions
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on the platform, the average new seller is able to update their beliefs toward the true parameters

without incurring the time and monetary cost of starting to use the platform. This allows the

platform to change its fee structure to increase platform profits from the baseline, though it may be

optimal for the platform to further increase profits by exploiting new sellers’ information gap.

Empirically estimating new sellers’ beliefs about the bidder entry process is critical, as a plat-

form’s optimal information structure may be ambiguous without empirical evidence. First, while

platforms may have increasing economies of scale in analyzing data, it is still costly to provide

users with additional information. This may be exacerbated by users’ low willingness to pay for

additional information: sellers who do not anticipate changing their beliefs will see little value in

purchasing additional data. Thus, despite the cost, platforms may prefer to offer such information

for little to no fee, if they offer it at all. Second, it is possible for the platform to help one side of

the market without harming the other: correcting sellers’ beliefs yields improved profits for sellers

while inducing more bidder entry. The effects of this may be magnified by the two-sidedness of

online platforms: increasing the surplus of one side of the market may lead to more entry on both

sides. Finally, since the users’ decision problem may change with new information, the optimal fee

structure on a two-sided platform (as studied under perfect information in e.g. Rochet and Tirole

2003 and Klein et al. 2005) may also change.

1.1 Related literature

This paper contributes to the large and growing literature on agent learning. Much of this literature

focuses on learning-by-doing and the extent to which more experienced agents are able to leverage

information to improve outcomes (Simonsohn 2010; Haggag, McManus, and Paci 2017; Strulov-

Shlain 2021; Tadelis et al. 2023). In particular, Huang, Ellickson, and Lovett (2020) shows how firms

entering into a new market adjust to market signals and set prices accordingly. I document similar

behavior among new sellers on an auction platform and contrast this behavior to that of more

experienced agents. The pattern of new sellers lowering reserve prices over time runs opposite to

the mechanism in Foster, Haltiwanger, and Syverson (2016), where new firms temporarily set lower

prices to increase demand in future periods, and it persists when controlling for seller reputation

variables that are observed by bidders. Other work addresses the theory of optimal behavior under
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uncertainty, especially in sequential games with updating (Rothschild 1974; Keller and Rady 1999;

Hitsch 2006). I contribute to the literature on estimating agent beliefs and learning process, as

in Erdem and Keane (1996) and Kim (2020); I also provide semiparametric identification results

for beliefs under learning as in Lu (2019), but without requiring that the learning process be

Bayesian.

I also address the field of auction design and optimal pricing in auctions. Auctions are a

particularly well-suited application for information design in platform markets due to the rich

auction theory literature that explores bidders’ and sellers’ optimal strategies in a variety of settings.

Additionally, a variety of empirical tools facilitate an empirical analysis with which to test and

quantify theoretical results. In particular, I adapt the endogenous auction platform model of

Marra (2019), which relates to other models of auctions with endogenous entry such as Levin

and Smith (1996), to a setting with seller uncertainty. My model also develops an insight from

Engelbrecht-Wiggans (1987) (that optimal reserve prices should account for their effect on bidder

arrival) into a new reserve price condition that nests that of Myerson (1981); this reserve price also

shows the tradeoff between the benefit of attracting another bidder (as in Bulow and Klemperer

1996) and expected surplus extraction when arrival is both endogenous and stochastic. Existing

literature further shows that auction participants may not always behave according to theory, even

in laboratory settings or when they are large, sophisticated firms (Davis, Katok, and Kwasnica 2011;

Ostrovsky and Schwarz 2016); my application examines small firms in a real marketplace.

Finally, this paper relates to the growing literature on two-sided markets. Existing work has

studied the question of cross-subsidization in optimal platform design both theoretically and em-

pirically (Rochet and Tirole 2003; Klein et al. 2005; Gomes 2014; Jullien, Pavan, and Rysman 2021;

Marra 2019). I consider the problem of optimal platform fees jointly with the problem of informa-

tion design to explore how a platform’s ability to shape users’ information affects its own profits

as well as participants’ welfare. Other work also examines the role of information and learning on

platforms; Mela, Roos, and Sousa (2023) documents firms learning to advertise on a platform af-

ter initially overestimating the effectiveness of advertising, and Foroughifar (2023) studies AirBnB

hosts’ beliefs about and use of smart pricing tools. More broadly, studies of search, ranking, and rec-

ommendation systems consider the same problem of influencing user behavior through non-price
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mechanisms, though these generally focus on the buyer side of a two-sided platform (Bronnen-

berg, Kim, and Mela 2016; Compiani et al. 2022; Xu, Deng, and Mela 2022; Hodgson and Lewis

2023).

2 Setting and descriptive evidence

The data for this paper comes from a sample of eBay auctions used in Resnick and Zeckhauser

(2002), and spans from January to June 1999. eBay is well known as a platform for users to buy

and sell items; at the time of the data, auctions were the only mechanism used on the site. This

data also preceeds the introduction of eBay’s data analytics service “Seller Hub” in 2016.

Before examining the data in more detail, I present a simplified outline of the eBay auction

process. Sellers choose to list an item for auction, and choose a starting minimum bid and (if

desired) a secret reserve price along with an item description. Prospective bidders can find listed

items on a search page, along with some information about the current price and the number of

bids submitted, and then choose to click into the item page. Bidders may then observe the current

minimum bid along with seller information and an indicator for whether the secret reserve price

(if any exists) has been met. Bidders submit their bids to eBay, which proceeds as a second-price

ascending auction (where the current minimum bid is the second-highest of existing bids and the

initial minimum bid). Examples of the search and item pages are presented in Figure 1.

2.1 Data

Due to the prevalence of antique and custom items within the full dataset, I restrict attention

to one of the more popular categories: a brand of stuffed animals called Beanie Babies (BBs).

There are approximately 1 million BB auctions in the dataset, corresponding to about 2.7 million

bids. All distinct varieties of BBs were produced by a single company, which ensures some level

of homogeneity among the listed items. Table A1.1 presents various summary statistics for the

sample of items in the analysis dataset.

Several features make this dataset attractive for empirical analysis. First, both the highest
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Figure 1: Example of eBay search and item pages

Notes: This figure was retrieved from the Wayback machine, and has been edited to conserve space. The search
and item pages are from 2001 and 2005, respectively. The sellers’ ability to feature their item can be seen here -
featured items are listed at the top of the page, while other items are highlighted and/or have bold titles. The
seller’s total feedback score and positive feedback rating are visible, as is the current bid, starting bid, and and
indicator for the reserve not being met by the current bid.

bids and secret reserve prices are recorded for each item in the dataset. Online auction datasets

frequently impute secret reserve prices from observable indicators such as the “reserve not met”

sign in Figure 1; since my focus is on sellers’ choice of reserve price, it is helpful to obtain accurate

measurements of this choice variable. Highest bids are similarly unobserved in many studies of

online auctions due to the ascending minimum bid only depending on the second-highest bid. As

will be shown later, the first-highest bid being observable is helpful for identifying and estimating

seller beliefs. Other data such as the time of the auction, any promotional choices made by the

seller, and seller-provided item descriptions are also included in the dataset.

Additionally, supplemental data on users’ feedback reveals all positive, negative, and neutral

ratings for accounts. Importantly, this feedback history dates back to the beginning of eBay in

1995; this allows me to construct the reputation variables that are visible to prospective bidders,

specifically feedback scores (defined as the number of all feedback events) and rating (defined as the

percent of feedback events which are positive). Unless otherwise noted, I use the inverse hyperbolic

sine of feedback scores to address the significant skew in user feedback. While feedback scores are

not a perfect measurement of the number of auctions in which sellers have participated, they are

often used as a proxy for user experience on eBay (see e.g. Simonsohn 2010).
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2.2 Trends among new sellers

To motivate the model, I highlight trends among new sellers’ choices and outcomes. I define new

sellers as all accounts who have no recorded feedback before the start of the dataset and who list at

least one item for sale. Similar to Kim (2020), I use a reduced-form test of the differences between

new and experienced sellers (those with above-median feedback scores at the start of the data). In

particular, for each seller ` and auction k, I estimate

y`k =
K−1∑
k=1

αk · 1[` is new] + x′`kβ + λ` + ηt(k) + ε`k

where y`k is a variable of interest, x`k contains predicted item values, seller feedback, and seller

ratings, and λ` and ηt(k) are respectively seller and month fixed effects. The variables of interest are

seller revenue net of fees and the effective reserve price, defined as the maximum of the secret reserve

price (if one exists) and the starting minimum bid. Throughout, I will homogenize variables such

as reserve prices and revenues by dividing the raw number by the predicted item value. The process

for estimating item values is detailed in section 4.1; additional plots in Appendix A1 replicate these

trends without depending on the predicted values.

Figure 2 plots regression coefficients αk when restricting the sample of new sellers to those

with at least K = 15 auctions in the data.1 These new sellers initially set higher prices and earn

lower revenues than they do in later auctions. This pattern is consistent with seller learning when

initial beliefs are biased toward higher prices. Further, by examining only those who remain on the

platform for at least 15 auctions and controlling for persistent seller heterogeneity, these trends do

not simply reflect early exit by high-value sellers.

1I chose 15 auctions to avoid including sellers who may have few items in their possession and no interest in
long-term trading, as well as to not have too short a panel for estimating seller fixed effects. The trends are similar
for different values of K.
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Figure 2: Regression coefficients αk of auction experience on variables of interest

(a) Effective reserve (homogenized) (b) Net revenue (homogenized)

Notes: These regressions pool 1,639 new sellers’ first 15 auctions with all auctions by 5,165 experienced sellers
(defined as those with ≥47 auctions at the start of the data, which is the 75th percentile of initial experience).
The sample is limited to sellers with at least 15 auctions in the data. The results are similar when using different
values of K.

Standard learning models also predict that the value of additional information decreases as

sellers obtain more experience, and that seller beliefs converge toward toward the true parameter.

To examine variability in seller choices over time, I regress current-auction reserve prices on lagged

net revenue and lagged reserve prices (again conditioning on sellers with at least 15 auctions in

the data). Figure 3 plots the coefficients of lagged net revenue from this regression, binned by the

auction number among new sellers. New sellers’ current prices are correlated with past revenue

signals, and the magnitude of the lag coefficient is larger in early auctions. This is consistent with

subsequent auctions containing relatively less information for more experienced sellers.

Figure 3: Coefficients from regressing prices on lagged revenues

Notes: These are the coefficients when regressing current-period effective reserve price on lagged revenue, mul-
tiplied by indicator functions for new sellers being in the first 1-5, 6-10, and 11-15 auctions in the data (among
new sellers with at least 15 auctions in the data and experienced sellers with >75th percentile of experience at
the start of the data). The controls include month fixed effects, feedback percentage, and predicted item value.
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Similar trends hold when examining new sellers more broadly, though the estimates are far

noisier. To examine the effect of selection on new seller outcomes, I separate new sellers into

cohorts based on the number of items they list. In Figure 4, I plot the average difference between

new sellers’ and experienced sellers’ reserve prices and net revenue for each of new bidders’ first

k auctions. Consistent with selection, new sellers who list relatively few items are also those with

significantly higher reserve prices and lower revenues.

Figure 4: New seller trends by cohorts of the number of items listed (difference from experienced
seller averages)

(a) Effective reserve (homogenized) (b) Net revenue (homogenized)

Notes: These figures represent a simple difference in means between new sellers in each cohort and experienced
sellers (defined as sellers with >75th percentile of experience at the start of the data). This does not include any
controls other than month fixed effects.

Additional results in Appendix A1 highlight other patterns in seller behavior over time. Sellers

exhibit some similar trends in non-price choice variables, notably whether to feature an item and

when and for how long to list it. However, the magnitude of the trends are generally small,

which motivates sellers’ pricing decision as the choice variable. I also show that, while there are

some trends in item descriptions, some of the most prominent focus on the item reserve price (in

particular, noting the lack of a secret reserve price).

2.3 Alternative explanations

Before moving to the auction model, I consider other mechanisms that might drive the trends

shown above. First, sellers might strategically choose the order of their listings when starting their

account, perhaps starting with items they value more highly. However, this strategy runs counter

to any dynamic considerations like those discussed in Foster, Haltiwanger, and Syverson (2016).
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Selling low-price items upon entering the platform would yield higher sale probabilities, allowing

sellers to increase their reputation scores and potentially earn more in subsequent auctions.

Sellers may face a different set of bidders in their initial auctions, among whom it may be

optimal to set higher prices than for later auctions. It is difficult to directly analyze the distribution

of bidder values in the absence of a model, since the increasing minimum bid and endogenous entry

of bidders create a selection problem. To overcome this, I restrict attention to the first and second

highest bids (where they exist) and flexibly control for the number of observed bids with fixed

effects. Figure A1.4(a) shows generally flat trends in the first and second highest bids in new

sellers’ auctions. This suggests that higher reserve prices are not driven by differentially higher

bids by sellers.

Finally, sellers may have systematically higher values for all items upon entering the platform.

In this dataset, I can observe sellers whenever they bid for other items and test whether their bids

change as they gain more experience on the platform. Figure A1.4(b) shows the bids of new sellers

for other listings, and illustrates that new bidders do not place higher (or lower) bids for other items

upon entering the platform. This is consistent with the underlying distribution of seller valuations

remaining constant throughout new sellers’ first auctions on the platform.

3 Auction platform model

The empirical patterns in the data may be driven by many factors, including both selective seller

entry and seller learning. Further, any seller learning must be about some feature of their envi-

ronment. To directly study the seller problem and understand their learning process, I develop

an auction platform model that allows for seller learning. The model builds on the two-sided en-

dogenous entry model from Marra (2019) by allowing seller actions to vary with their individual

beliefs about their profit function, and will note where the models differ significantly. I begin by

introducting the following notation and assumptions.

A large number NS of sellers and NB of bidders have access to a monopoly auction platform

and can choose to participate. Each potential bidder i has valuation vij for each item j that may
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be traded on the platform, where vij ∼ FB. Potential sellers ` have outside option values v0`j for

each item j they possess, where v0`j ∼ FS . Each item has auction-level observables Xj . I assume

all prospective sellers and bidders know the valuation distributions FB and FS , which satisfy the

following assumption.

Assumption 1. The value distributions FB and FS are absolutely continuous and have con-

nected support. Bidder values vij are independent from vi′j for all i 6= i′ ∈ {1, ...,NB},

and seller values v0`j are independent from vij for all i ∈ {1, ...,NB} and ` ∈ {1, ...,NS}.2

Further, the bidder value distribution FB satisfies the strict monotone hazard rate property

(i.e., fB(x)
1−FB(x) is strictly increasing in x on the support of FB). Finally, dependence on item

j’s characteristics takes the form v · exp(γ(Xj)), where Xj is exogenous to all values v, which

are drawn from the players’ respective distributions (FB or FS).

Throughout the discussion of the model, I focus on homogenized item values, which is equivalent

to setting γ(Xjt) = 0 for all items. Since each item j is sold by a single seller `, I omit dependence

of values and other terms on j and ` where possible.

I assume all sellers know their values v0 for the item they own. Sellers can choose to list the

item for auction after incurring an item-specific entry cost cES
i.i.d.∼ FcES

, which is also independent

from sellers’ private values v0. After deciding to list the item, sellers also choose an effective reserve

price r and minimum bid m. For the purposes of the model, I assume m is exogenously drawn

between 0 and r, and unlike Marra (2019), I assume that r is observable to all prospective bidders.3

Potential bidders can see the item on a listing page and decide whether or not to enter the auction;

if they do so, they incur entry cost cEB and only then learn their value vi for the item. Bidders may

then costlessly submit a bid. The bidder with the highest bid wins the item if their bid exceeds the

reserve price, and the transaction price p is equal to the highest of the effective reserve price and

the second highest bid.

2Other work explores the relationship between reserve prices and outcomes in private and common values settings
(Quint 2017).

3In this dataset, only 23.9% of auctions have a secret reserve price, while 89% have an minimum bid higher
than the eBay default of $1. Thus, this simplifying assumption is reasonable in the present setting. The increasing
minimum bid rule on eBay means the “reserve not met” indicator disappears when at least one bid passes the reserve
price, at which point the minimum bid has often increased from its starting value. Further, Katkar and Reiley
(2007) documents that the reserve price affects bidder entry even when it is still secret through the “reserve not met”
indicator. Higher reserve prices are less likely to be met by future bidders, so on average a higher secret reserve price
will be flagged for a longer period. A broader literature relates to the choice between public and secret reserve prices
(Hasker and Sickles 2010).
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Bidder and seller behavior is also affected by the cost structure of using the platform, denoted

by a vector c of all associated costs and fees. In particular, entry costs cEB and cES for both bidders

and sellers are decomposed into time costs cTB and cTS and insertion fees cIB and cIS , respectively.

The insertion fees are paid directly to the platform when a seller lists an item or when a bidder

enters an auction, regardless of whether the item is sold. The platform can also impose bidder and

seller fees cPB and cPS . If the item is sold, the highest bidder pays (1 + cPB)p and the seller receives

(1− cPS )p, so the platform also receives revenue (cPB + cPS )p from each successful sale.

The rest of the section is divided into three parts. I first consider bidder strategies, conditioning

on seller behavior, since a profit-maximizing seller considers the behavior of bidders that may enter

their auction. I then examine the seller strategies and how they depend on sellers’ beliefs about

bidder behavior. Finally, I review the conditions on both bidder and seller behavior that must hold

simultaneously in equilibrium.

3.1 Bidder strategies

I first focus on the the bidding strategy of actual bidders who enter the auction. This implies

a continuation value of entering in an auction, which pins down bidders’ optimal decision when

deciding whether to enter an auction.

3.1.i Bidding stage

All Ñ bidders who have entered the auction face no cost to submitting their bid, but may be

constrained from doing so by the minimum bid m. Following Vickrey (1961) and Marra (2019),

all bidders with value vi will submit bids vi
1+cPB

as long as their bid exceeds the current value of

m. Any bidder with vi < (1 + cPB)m will not bid at all. While this poses a selection problem for

estimation in section 4, it has no effect on the outcome of the auction game.

I abstract from any potential learning and uncertainty in bidder strategies. This is because

eBay provides an automatic bidding tool that increments the minimum bid up to the maximum

value a bidder reveals they are willing to pay. Thus, eBay already implements the optimal bidding

rule for all bidders via algorithm. This also allows for more tractable modeling of bidder behavior,

14



both for the researcher and for the sellers’ mental model of bidder behavior.

3.1.ii Entry stage

In this setting, in contrast to Marra (2019), the reserve price is public. This means that even

though bidders do not know their value before entering the auction, they form expectations about

their expected surplus from entering the auction based on the price they see at the search stage.

More formally, define the fee-adjusted reserve price faced by bidders as rB ≡ (1 + cPB)r∗ and let Λ

parameterize bidder arrival. Then a potential bidder’s ex ante expected surplus from entering an

auction is

πB(r | Λ, c) =

NB−1∑
n=1

1

n︸︷︷︸
(i)

·E
[
vn:n − (1 + cPB) max{v(n−1):n, r

∗}
∣∣∣ vn:n ≥ rB

]
︸ ︷︷ ︸

(ii)

· (1− FB(rB)n)︸ ︷︷ ︸
(iii)

·P[Ñ = n | Λ]︸ ︷︷ ︸
(iv)

(1)

where v`:n is the `th highest out of n realizations of vi. The four components of πB are (i) the

probability that any given bidder has the highest value, (ii) the expected surplus when the highest

bidder wins, (iii) the probability that the highest bid exceeds the fee-adjusted reserve price, and

(iv) the probability that n bidders enter at the auction.

The following proposition characterizes the equilibrium of the bidder entry game. The existence

and uniqueness of equilibrium in this setting follows from Marra (2019), but the presence of a public

reserve price yields a new result: the expected number of bidders is decreasing in the posted reserve

price.

Proposition 1. Assume bidder arrival is i.i.d. Poisson with mean Λ(r). Then the bidder

entry equilibrium exists and is unique. Further, ∂Λ
∂r < 0. (Proof in Appendix A2)

The intuition for this result is as follows. Potential bidders have zero expected profit (net of time

cost) from entering an auction, i.e.

0 = πB(r | Λ, c)− cEB (2)
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since any positive profit will induce additional entry and negative profit will cause excess bidders

to leave. The expected surplus in an any auction is declining in the number of competing bidders,

since additional bidders both increase the expected price paid and lower the probability that a new

bidder will win the item. Expected surplus is decreasing in the equilibrium number of expected

bidders, Λ, and properties of the Poisson distribution imply that a unique value of Λ satisfies the

expected zero profit condition for each r. Finally, expected bidder surplus declines with r, so fewer

bidders enter when they expect more competition from the seller.

For tractability, I parameterize the mean number of bidders Λ in equilibrium as a function of

some vector δ0. Proposition 1 shows that for each r there is a different expected number of bidders

that enter the auction. Without loss of generality, I write the expected number of bidders as

Λ(r | δ0) = exp(δ0,1 + δ0,2ρ(r)) (3)

for some strictly increasing function ρ that is determined by the zero-profit condition (2). Impor-

tantly, Proposition 1 implies δ0,1 < 0: any increase in the reserve price will reduce the expected

number of bidders that enter the auction. Combined with the assumption that bidder arrival is

Poisson, the probability that n bidders enter the auction is

pn(r | δ0) =
Λ(r | δ0)n exp(−Λ(r | δ0))

n!
(4)

for n = 0, 1, 2, ... given Λ(r | δ0).

3.2 Seller strategies

I first show how the platform’s pricing structure and endogenous bidder entry shape sellers’ choice

of optimal reserve price. I then extend this result to allow for seller uncertainty and learning, and

conclude with sellers’ entry problem. Throughout, I treat the sellers’ item-specific entry cost cES as

fixed for a given auction.
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3.2.i Platform reserve price under perfect information

I begin with a general form of the seller profit function to fix ideas. Sellers’ expected profit,

conditional on δ0, is given by

Π(v0, r | δ0, c) = (1− cPS ) · R(r | δ0)︸ ︷︷ ︸
E[Revenue|r,δ0]

+ v0 · K(r | δ0)︸ ︷︷ ︸
P[Keep|r,δ0]

− cES

where the precise functional forms of R and K follow from the second-price auction literature and

the Poisson arrival function.4 Taking first-order conditions, the optimal interior reserve price r∗

satisfies

ψ(r∗ | δ0, c) ≡
−(1− cPS )Rr(r

∗ | δ0)

Kr(r∗ | δ0)
= v0

where ψ is the virtual type function mapping bids to the space of seller values. Applying the

Poisson assumption and the relevant functional forms, and then rearranging the terms of Rr and

Kr, yields the following result:

Proposition 2. Assume bidder arrival is Poisson with mean exp(δ0,1 + δ0,2ρ(r)). Then

(recalling that the fee-adjusted reserve price faced by bidders is rB ≡ (1 + cPB)r∗) the optimal

interior reserve price satisfies

v0

1− cPS
=

[
r − 1− FB(rB)

(1 + cPB) · fB(rB)
− WR(r | δ0)

fBmax(r | δ0)

]
fBmax(r | δ0)

fBmax(r | δ0) +WK(r | δ0)
(5)

where fBmax(r | δ0) ≡ (1 + cPB) ·
∑N̄B

n=1 pn(r; δ0)FB(rB)n−1fB(rB)n is the scaled density of

the highest bid at r given δ0, and WR(r; δ0) ≡
∑NB

n=0(∂pn(r;δ0)
∂r )Rn(r) and WK(r; δ0) ≡∑NB

n=0(∂pn(r;δ0)
∂r )Kn(r) are weighted averages of the expected revenue and keep probabilities

for each n.

4Formally, these functions are written R(r | δ0) ≡
∑NB
n=0 pn(r | δ0)Rn(r) and K(r | δ0) ≡

∑NB
n=0 pn(r | δ0)Kn(r),

where rB = (1 + cPB)r and

Rn(r) ≡ nr(1− FB(rB))FB(rB)n−1 +
n(n− 1)

1 + cPB

∫ ∞
rB

z(1− FB(z))FB(z)n−2fB(z)dz

Kn(r) ≡ FB(rB)n
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Note that when δ0,2 = 0, the arrival process does not depend on r and WR = WK = 0. When

the bidder and seller fees are also zero (cPS = cPB = 0), equation (5) reduces to the Myerson (1981)

optimal reserve price formula.

To provide intuition for this pricing rule, Figure 5 plots the implied reserve price from Propo-

sition 2 for different values of the bidder arrival coefficient δ0,2. The figure starts from the baseline

case of δ0,2 = 0 and shows increasingly negative values of δ0,2 in comparison. As δ0,2 decreases,

sellers should optimally lower the markup in their reserve price. In this particular case, it may even

be optimal to set a reserve price lower than the seller’s own value if the bidder deterrence effect is

sufficiently strong. The precise shape of the optimal reserve price function depends on the intercept

δ0,1 of the log-mean of average bidders, as well as the shape of the bidder value distribution FB

and the function ρ that is determined by bidders’ zero profit condition (2).

This equation generalizes several results from the related auction literature. As previously

noted, it nests the Myerson (1981) reserve price formula for δ0,2 and carries with it the same intu-

ition: sellers may set a higher reserve to extract additional surplus from bidders. Sellers’ influence

over the arrival process means they explicitly weigh the expected benefit of surplus extraction

against the expected benefit of a potential additional bidder (though an extra bidder would be

better in expectation, as in Bulow and Klemperer (1996), this arrival is not guaranteed). Thus,

this equation represents a version of the argument in Engelbrecht-Wiggans (1987), in that sellers

may wish to lower the reserve to attract more bidders. Since there is some probability that fewer

bidders arrive, however, the seller may still “protect” some expected surplus by setting a non-trivial

reserve price.
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Figure 5: Optimal reserve price for varying reserve price coefficients δ0,2

Notes: These figures show optimal reserve price functions for varying parameters of δ0,2, keeping δ0,1 = 1.0
fixed, where log-bidder values are normally distributed with mean 0 and variance 0.4, and ρ(r) = r ·FB(r). The
dashed 45-degree line represents all values where the seller value is equal to the optimal reserve price.

3.2.ii Platform reserve price under uncertainty

I now assume sellers may not know the true parameter δ0. This uncertainty arises because δ0 is

a part of bidders’ equilibrium play in the “search” rather than “item” stage of the game. Any

uncertainty about or inattention to the platform’s search algorithm, bidders’ search strategies, or

bidders’ search costs could therefore contribute to uncertainty about sellers’ own effect on prospec-

tive bidders’ search process. For example, Simonsohn (2010) documents that eBay sellers may not

understand the impact of competition on their own profits and over-enter when market activity is

high. This competition neglect is related to seller behavior in this setting, as sellers may set reserve

prices too aggressively (in essence, competing) for their own items. These sellers may fail to realize

the extent to which this behavior crowds out potential bidders, each of whom may choose another

way to spend their time instead of entering an auction with an uncertain payoff.

The previous derivations can be extended straightforwardly in the case where sellers have some

belief density b about the true value of δ0. In an abuse of notation, we define subjective expected

profit as Π(v0, r | b, c) ≡
∫

Π(v0, r | δ, c)b(δ)dδ. The respective profit function components R(r | b)

and K(r | b) are defined similarly, implying the subjective virtual type function ψ(· | b, c) from

rearranging the first-order condition of Π(v0, r | b, c) with respect to r. For tractability, I assume

all sellers are myopic, so they only maximize current-period profits conditional on their beliefs b
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and do not actively experiment.5

As is standard in models of learning, sellers also have a model of the true data-generating

process, from which they learn about the unknown parameter δ0. I assume sellers update their

beliefs after every item they list for auction. All sellers believe profit draws y are generated by the

process

y = Π(v0, r | δ0, c) + ε (6)

where ε is drawn i.i.d. from some distribution Fε|r,v0
that is known to sellers. Each auction, sellers

observe the associated data D = {y, v0, r}, and have the likelihood lS(δ | D) as implied by the noise

distribution Fε|r,v0
. After each auction, sellers use a deterministic transition function T to update

their prior beliefs b to the posterior b′:

b′(δ) = T (b(δ),D) (7)

Thus, the evolution of sellers’ reserve price strategies depends entirely on their beliefs b as updated

after each auction, which in turn are driven by variation in data observed after each auction. I note

that sellers may be Bayesian, though this is not necessary for the conclusions of the model.

3.2.iii Entry stage

Prospective sellers will enter the platform as long as their net expected surplus (over keeping the

item) is positive. This yields the following inequality for sellers with beliefs b:

Π(v0, r
∗ | b, c)− v0 ≥ 0 (8)

I first show conditions under which r∗ is increasing in v0. This is common and easily verified under

the functional forms assumed in much of the related literature; I make this explicit because it

5This assumption is used by Huang, Ellickson, and Lovett (2020) to simplify the analysis of firms learning from
demand signals. This also relates to the “anticipated utility model” discussed in Cogley, Colacito, and Sargent (2007);
in their setting, the model without active experimentation is a good approximation for the fully dynamic Bayesian
model.
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depends on the underlying beliefs b and is important for subsequent propositions.

Proposition 3. Assume Kr(· | b) > 0. Then r∗ is increasing in v0 and the virtual type

function ψ(· | b, c) is increasing. (Proof in Appendix A2)

Given the functional form of R and the monotonicity of r∗ in v0, the gains from trade Π(v0, r
∗ |

b, c)−v0 are strictly decreasing in v0. This implies a threshold rule for sellers, such that sellers with

a private value above that threshold will not list an item for auction. Each seller’s entry threshold

does not depend on that of other sellers since each auction’s reserve price is public knowledge,

and potential bidders enter up to their expected zero profit condition. This yields the following

characterization of the seller entry problem.

Proposition 4. There exists a unique threshold v̄(b, c) for each belief density b such that

sellers with beliefs b will list their item for auction if and only if v0 ≤ v̄(b, c).

That is, sellers will only select into the platform if their values are sufficiently low given their

beliefs. This holds regardless of heterogeneity across seller beliefs, and heterogeneity in beliefs does

not directly impact the bidder arrival problem: bidders are only impacted by the reserve price r∗

instead of the underlying values of v0 and b.

This threshold condition is similar to other results in the literature, and corresponds to Marra

(2019) when beliefs b are common across all sellers and a point mass on the true parameters. I

weaken the assumption that this threshold is objectively correct under the true item values: it

needs only be optimal according to each seller’s private beliefs about the true arrival process. This

ensures that a unique equilibrium exists for the seller entry game even under heterogeneous and

potentially biased beliefs among sellers.

3.3 Equilibrium definition

Before proceeding, I review the conditions for both bidders and sellers that must hold in equilibrium.

Given a distribution FB of bidder values, a distribution FS of seller outside option values, a fixed

bidder entry cost cEB, a distribution FcES
of seller entry costs, bidder and seller transaction fees

cPB and cPS , initial (t = 0) prior beliefs b0 about the parameters of bidders’ entry process, and an

updating rule T by which sellers update their beliefs as in (7), equilibrium consists of
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(i) the threshold bidding rule as defined in 3.1.i

(ii) the bidder arrival parameter δ0 that determines mean bidder arrival Λ(r | δ0) as in (3)

(iii) the seller reserve price rule defined by ψ(r∗ | b, c) = v0 for any seller beliefs b

(iv) the seller entry threshold v̄(b, c) implied by (8)

such that actual bidders maximize expected profit from participating in an auction, potential

bidders earn zero expected profit from entering any auction, sellers maximize profits conditional

on their beliefs about the bidder entry process, and the marginal seller earns zero expected profit

given their beliefs about the bidder entry process.

The equilibrium conditions highlight the importance of seller beliefs in determining outcomes on

the auction platform. Sellers’ beliefs determine both their entry decision and their choice of reserve

price conditional on entry. Further, present beliefs affect future beliefs through the updating rule

T , so the entire path of sellers’ entry decision and reserve prices depend on their initial beliefs.

While bidders’ equilibrium strategies do not depend on sellers’ beliefs about the bidder arrival

process, bidder choices and outcomes are best responses to sellers’ behavior. Thus, all actions on

the platform are shaped by sellers’ beliefs about bidder behavior, and the speed with which they

learn about the true parameters.

4 Estimation

The model from the previous section highlights several important features of the sellers’ environ-

ment. First, sellers’ beliefs determine both their decision of whether to list an item and, conditional

on listing, what reserve price to set. Further, the platform setting implies that profit-maximizing

sellers with full information will set a lower reserve price than would be optimal if entry did not

depend on sellers’ reserve prices. I now estimate the model to evaluate the role these features

play in the empirical patterns, and the extent to which sellers are learning the true bidder arrival

process.

Estimation proceeds in two parts. First, I estimate the demand side of the model, consisting

of bidder arrival parameters, the distribution of bidder valuations FB, and heterogeneity in mean

22



item valuations. To do this, I derive a likelihood function for the demand side that corrects for

selection in which bids are observed due to the increasing minimum bid rule, and apply results

on debiased machine learning to flexibly estimate observed item heterogeneity. This process also

implies bidder time costs from bidders’ zero profit condition. I then estimate the supply side of the

model, using data from both experienced and inexperienced sellers. I recover the distribution of

seller values by assuming experienced sellers have accurate beliefs about the bidder arrival process,

and obtain time cost estimates from the seller entry condition. I then use the implied seller value

distribution to estimate new sellers’ prior beliefs about the bidder arrival process and study the

relationship between seller learning and selection.

4.1 Demand side

I first estimate the parameters of the demand model, which include both a low-dimensional compo-

nent and a high-dimensional component. The low-dimensional parameter ϑd consists of the bidder

arrival parameters, and the bidder value distribution FB and reserve price distribution Fr (each

approximated using Gaussian mixture models with five components). The high-dimensional pa-

rameter γ accounts for observable heterogeneity in item values through an index γ(Xj) for each

item j, where Xj is text data that is encoded as a vector of 5,368 word indicator variables from the

item description as well as month fixed effects. In order to flexibly account for this heterogeneity, I

parameterize γ as a large neural network. Since machine learning models can introduce bias due to

both overfitting and model selection of high-dimensional parameters, I use debiased machine learn-

ing techniques as in Farrell, Liang, and Misra (2020), Chernozhukov et al. (2022), and Ichimura

and Newey (2022) to correct for bias in ϑd. More details on the data construction and estimation

process may be found in Appendix A3, and details on the orthogonalization process are shown in

Appendix A4.

In addition to accounting for item-level heterogeneity in mean valuations, I also allow bidders’

entry equilibrium to vary with observable seller and item characteristics. I parameterize the number

of bidders to enter an auction as

Λj ≡ Λ(rj , Zj | λ, δ0) = exp(δ0,1 + Z ′jλ+ δ0,2ρ(rj)) (9)
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where Zj contains the seller feedback score, seller ratings, and the average log item value γ(Xj).

I assume the additional arrival parameter λ is known to all sellers, regardless of their level of

experience. To streamline notation, I combine the known arrival shifter Z ′jλ with the intercept to

write the item-specific arrival parameter δj,0,1 ≡ δ0,1 + Z ′jλ, with δj,0 ≡ {δj,0,1, δ0,2}. I also use

this notation for beliefs, where bj represents sellers’ item-specific beliefs about bidder arrival with

Ebj [δ1] = Eb[δ1] + Z ′jλ.

The function ρ is determined by the bidder zero-profit condition at each point in the support

of r. Since evaluating the high-dimensional index γ is computationally challenging, I opt for a

reduced-form representation of the entry process instead of solving the fixed-point problem for ρ.

I set ρ to be the product of the identity function and the CDF of the bidder value distribution

evaluated at r, i.e. ρ(r) = rFB(r). The intuition for this choice comes from the zero profit condition

for bidder entry and Proposition 1. The expected bidder surplus from entering the auction depends

on the probability that their bid will be below the reserve price, FB(r); it is also strictly decreasing

in r, which is the price paid when the reserve is binding. I also estimate the model with alternative

specifications for ρ and find similar results.

eBay’s use of an increasing minimum bid creates a selection problem, since only the first two

highest bids in an auction are known to correspond to the first two highest-value bidders. All other

bids may be excluded from the data if the two highest bids are the first to be placed, since the

minimum bid will increase to the second highest of these two and “lock out” subsequent arrivals

(Platt 2017; Freyberger and Larsen 2022). To counteract this problem, I derive a likelihood that

explicitly models the selection process (see Appendix A5 for a detailed derivation). I first denote

v
(k)
j as the kth highest homogenized log-bid. Using the Poisson assumption on bidder arrival, I

model the distributions of the reserve price rj and the highest two bids v
(k)
j when these bids are

observed.6 This likelihood also conditions on the starting minimum bid mj (which is binding when

there are fewer than two bids), the number Nj of bids observed, arrival shifters Zj , and components

of observable heterogeneity Xj . Together, the demand likelihood contribution for a single auction

6Note that rj and v
(k)
j are not observed directly; rather, each is a residual representing its counterpart in the data

after being homogenized using the item value index γ(Xj).
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is

`demand
j (ϑd, γ | Nj , {v(k)

j }, Xj ,mj , rj) =

fr(rj | ϑd, γ) ·
[
e−Λ[1−FB(mj |ϑd,γ)]

]1[Nj=0]

·
[
fB(v

(1)
j | ϑd, γ)Λe−Λj [1−FB(mj |ϑd,γ)]

]1[Nj=1]

·
[
fB(v

(1)
j | ϑd, γ)fB(v

(2)
j | ϑd, γ)Λ2

je
−Λj [1−FB(v

(2)
j |ϑd,γ)]]1[Nj≥2]

(10)

Appendix A5 shows how this likelihood approach performs with simulated data. In order to illus-

trate the role of the orthogonalization step in consistently estimating ϑd, I simulate settings with

a low-dimensional γ and a high-dimensional γ.

After estimating the bidder value distribution FB and the other bidder arrival parameters,

I estimate the bidder entry cost cEB. For each auction, I compute the ex ante expected surplus

πB(r | Λ, c) and use the bidder zero-profit condition in (2) to estimate bidders’ entry cost as the

mean of the expected bidder surplus across all auctions. Since bidder insertion fees cIB are zero in

the dataset, this implies that the full bidder entry cost is in fact the time cost cTB.

4.2 Supply side

I now turn to the problem of identifying and estimating the supply side of the model. Since all

demand-side parameters are recovered from the likelihood approach in the previous section, the

remaining parameters of interest are the distribution FS of sellers’ outside option values, sellers’

entry cost distribution FcES
, and new sellers’ beliefs about the unknown bidder arrival parameter δ0.

While seller values and costs have been estimated in many similar settings, the belief estimation

process is key to understanding the role of information and learning in determining outcomes on

the auction platform.

I first estimate all seller parameters except new seller beliefs using data from experienced sellers.

I denote these parameters, including the nuisance parameters of distribution of entry parameters

Fδ0,1 , by ϑs. I make the simplifying assumption that the most experienced sellers have perfect

information about the arrival process, so plugging the experienced sellers’ reserve prices into the

virtual type function ψ(· | δ0, c) yields the imputed seller values v̂0 for all items that are listed for

auction. I also assume sellers’ entry costs are i.i.d. Exponential, their values v0 are i.i.d. from a
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5-component Gaussian mixture, and entry parameters δj,0,1 are i.i.d. Gaussian. First denote c̃(z)

as the vector of costs where cES is replaced with z and Π∗(v0 | δ0, c) as the maximized profit given

seller value v0. Further, denote by v̄(δj,0, c) the experienced seller entry threshold with known

bidder entry parameter δj,0 and costs c. The likelihood contribution of a single auction run by an

experienced seller is

`supply-e
j (ϑs | v̂0j , δj,0) =

fs(v̂0j | ϑs) · fδ0,1(δj,0 | ϑs) · FcES (Π∗(v̂0j | δj,0, c̃(0))− v̂0j | ϑs)∫∞
0

[ ∫∞
−∞ FS(v̄(l, c̃(z)) | ϑs)fδ0,1(l | ϑs)dl

]
fcES

(z | ϑs)dz

The density for seller values is multiplied by a correction term to account for random truncation

in the seller value distribution from the seller threshold rule. That is, each item is only listed if the

entry cost is below the expected surplus of the seller with a particularly favorable (zero) entry cost.

The probability that this occurs for a specific imputed item value v̂0j is divided by the probability

that any seller lists their item. Due to seller entry costs being unobserved, this likelihood is not

identified on its own. To identify the distribution of seller values, I assume that the mean of the

seller entry cost distribution is equal to cPS , where the platform entry fees are observed in the data.

Variation in δj,0,1 shifts sellers’ participation threshold and traces out the distribution of seller

values.

Having obtained the sellers’ value distribution, I can use variation in new sellers’ reserve prices

to identify their underlying beliefs in each period. The following proposition offers conditions

under which seller beliefs bδ2 about the effect of reserve prices on arrival can be semiparametrically

identified using variation in the highest bid v(1).

Proposition 5. Denote history H as a collection of data D from auctions. Let Assumption

1 hold, assume FS is known, and further assume

(i) The prior b is common to all sellers with a shared history H.

(ii) b is composed of independent marginal densities bδ1 and bδ2 , where both the marginal

bδ1 corresponding to the intercept and the seller entry threshold v̄(b, c) are known.

(iii) bδ2 satisfies the Carleman condition, i.e. the absolute moments of bδ2 (written as µj =∫
|δ|jbδ2(δ2)dδ2) are finite for all j ≥ 1 and satisfy

∑∞
j=1 µ

−1/j
j =∞.

(iv) The reserve price r has full support on a positive-measure interval including some x∗ for

which ρ(x∗) = 0 and ψ(x∗ | b, c) < v̄(b, c).
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(v) For ξk(β, x
∗, c) defined as ∂k−1

∂xk−1ψ(x∗ | b, c) with all terms of the form
∑∞

n=0Gn(x∗) ∂k

∂xk
pn(x∗ |

b) replaced with β
∑∞

n=0Gn(x∗) ∂k

∂xk
pn(x∗ | b) for G ∈ {R,K}, ξk is invertible in β.

Then the marginal density bδ2 of a seller with history H is identified up to its first k̄ moments.

(Proof in Appendix A2)

The proof proceeds in two parts, for which I give a heuristic explanation here. The first step is to

recover the virtual type function ψ that sellers use to determine their choice of reserve price. In the

absence of seller selection, the distribution of sellers’ reserve prices is obtained via a standard change-

of-variables approach using the first-order condition v0 = ψ(r | b, c). Combined with knowledge of

sellers’ participation threshold v̄(b, c), the distribution of reserve prices for the listed items can be

written as a known, invertible function of ψ(· | b, c).

The next step of the proof is to invert the virtual type function to recover the marginal density

bδ2 , which represents seller beliefs about the effect of the reserve price on bidder arrival. Sellers’

first-order conditions are composed of integrals of known functions, making this inversion similar

to the identification of distributions of random coefficients (Fox et al. 2012). In this case, ψ(· | b, c)

and its derivatives are known functions of various moments of b. Additional restrictions on b

(namely, independence between the marginal beliefs about δ0,1 and δ0,2 and knowledge of sellers’

beliefs about δ0,1) simplify the integrals in question. Thus, evaluating the virtual type function

and its derivatives yields known, invertible functions of moments of bδ2 . The identification result

is general in that it recovers an arbitrary number of moments of the marginal belief distribution

(allowing for a broad class of possible beliefs), though it is important to note that these beliefs are

only identified within the context of the larger parametric model. Notably, it is not necessary to

assume that sellers are Bayesian: identification of bδ2 is achieved with data from a single period for

all sellers that observe the same data history H.

Though Proposition 5 offers semiparametric identification of bδ2 , the necessary assumptions

are somewhat restrictive. First, Assumption 1 imposes that all sellers’ outside option values are

drawn i.i.d. from the same distribution, which rules out time-invariant heterogeneity in sellers’

value distributions. Also, assumption (i) of the proposition rules out unobserved determinants of

beliefs: given the form of the updating rule in equation (7), this allows the researcher to restrict

attention to sellers with identical beliefs. Further, since only one signal (profit) is observed after
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every auction, I impose independence between the two marginal densities of the prior distribution.

The second assumption is also restrictive: other components of the sellers’ decision problem must

be known to isolate the effect of beliefs about any one parameter. This is similar to functional form

assumptions of e.g. an additive T1EV shock in logit demand models, even while the rest of a utility

specification may be flexible. Assumptions (iii) and (iv) are similar to assumptions in the random

coefficients literature, principally Fox et al. 2012; these use variation in a linear index to recover

population densities, though in this case I study an individual’s belief density. Assumption (v) is

also technical, and requires the derivatives of the virtual type function to be invertible in weighted

sums of the derivatives of the expected probability of any bidder arriving. Since the derivatives of

the virtual type function are known, this is a joint restriction on the seller beliefs about δ1 and the

bidder value distribution FB at the point x∗ in assumption (iv).

This result is related to others in the literature on identifying individual beliefs in structural

models. Lu (2019) shows that state-dependent beliefs can be identified in a setting with finite

support and Bayesian updating; in contrast, I do not require Bayesian updating and allow for ab-

solutely continuous density functions. Wang et al. (2024) likewise adopts a finite-support approach

with Bayesian updating, which is used to identify beliefs about time-varying, unobserved macroeco-

nomic trends; Wang and Yang (2024) offers more general results in finite-support settings for both

myopic and forward-looking agents. Aguirregabiria and Magesan (2020) semiparametrically iden-

tifies firm beliefs within a game, and similarly relies on a finite support. While they do not require

Bayesian updating, they require beliefs to coincide with the truth in some cases; this restriction on

seller beliefs functions similarly to my assumption that other features of sellers’ decision problems

are pinned down by external arguments.

Though beliefs are semiparametrically identified for each history H of auction data, in practice

I make several additional assumptions for computational tractability. First, I assume sellers’ initial

beliefs about δ0 are bivariate normal, with parameters jointly denoted as ϑb. I also assume beliefs

are updated according to a modified Laplace approximation to Bayes’ rule: each period, sellers’

beliefs are a bivariate normal with mean equal to the maximum a posteriori estimate of the true

Bayesian posterior and covariance matrix given by the curvature of the true Bayesian posterior at
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the maximum a posteriori estimate.7 I use ψ(r∗ | b, c) as a control function for seller values v0

since they are an unobservable but critical component of sellers’ updating process. Finally, I use

these parametric assumptions on the entry cost distribution and sellers’ prior to pin down sellers’

entry threshold v̄(b, c) and prior bδ1 , which allows me to relax the independence assumption in

Proposition 5. Appendix A6 discusses additional details of the estimation procedure.

Having established the identification of new sellers’ prior parameters, I now explain the like-

lihood approach used for estimation. I use a change of variables to obtain the density of the new

sellers’ reserve prices from their underlying value distribution. As with the experienced-seller likeli-

hood, there is a selection term to account for the probability of each item being listed by any given

seller. The likelihood contribution of a single auction of item j run by an inexperienced seller in

their tth auction is therefore

`supply-i
jt (ϑb | Djt) = fs(v̂0j | ϑs) · ψ′(rj | bt, c̃(0)) ·

FcES
(Π∗(v̂0j | bt, c̃(0))− v̂0j | ϑs)∫∞

0 FS(v̄(bt, c̃(z)) | ϑs) · fcES (z | ϑs)dz

s.t. bt+1 = T (bt,Djt | ϑb) ∀t

v̂0j = ψ(rj | bt, c̃(0))

Though beliefs in this model can be identified from data within a single period, additional variation

across and within different sellers is pooled via the assumed learning rule to aid in estimation.

4.3 Estimates

Table 1 presents the estimated bidder arrival parameters. As predicted by the model, the reserve

price coefficient δ0,2 is negative, indicating that higher reserve prices deter potential bidders from

entering auctions. Arrival also increases with reputation variables like seller rating and feedback,

as well as the estimated mean item value. The signs of the estimates are intuitive: more bidders

enter auctions when the sellers have higher ratings, are more experienced, and when items are more

7This assumption helps solve a computational challenge, since the prior is not conjugate with the posterior due
to the nonlinear dependence of expected profit on the bidder arrival parameters. In addition to this nonlinearity,
each sellers’ path of beliefs about the arrival parameter can evolve differently according to their signals. The Laplace
approximation is one of several posterior approximations used in Bayesian statistics, and imposing that beliefs are
updated in this manner ensures that learning follows a computationally tractable Markov process with a relatively
low-dimensional state.
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valuable.

Table 1: Estimated bidder arrival parameters and entry cost

λ0

δ0,1 δ0,2 Rating IHS(Feedback) ln(Pred. Item Value) cTB

Estimate 0.871 -0.245 0.055 0.146 0.409 0.056
Std. Err. (0.059) (0.007) (0.026) (0.010) (0.022) (5.5×10−5)

Notes: The estimated coefficients are obtained via debiased GMM; further details are presented in Appendix A4.
Estimates and standard errors for all but the entry cost are computed using the optimal weighting matrix; the
standard error for the entry cost is the naive standard error (standard error correction for two-step estimation
in progress).

The estimated bidder entry cost comes from the equilibrium bidder entry condition and the other

estimated bidder arrival parameters. Evaluating the expected zero profit condition in equation (2)

yields an estimated homogenized bidder time cost cTB of 0.056, since there are no bidder insertion

fees. For the average (median) item in the dataset, this is approximately $0.48 ($0.33). This

represents a moderate but not prohibitive time cost to entering each auction and inspecting the

listing. The average homogenized seller entry fee is cPS = 0.075, though sellers’ overall entry costs

are assumed to be heterogeneous for different items.

As described in the previous section and as is common in the auction literature, the estimated

demand parameters yield the optimal reserve pricing rule for sellers with perfect information. I

use the sample of reserve prices chosen by experienced sellers (defined as those in the top 25% of

sellers by experience at the start of the data) to impute the sellers’ outside option for each item,

under the assumption that experienced sellers have perfect information about the bidder arrival

process. Figure 6 plots the estimated value distribution FS along with the bidder value distribution

FB obtained in the demand-side estimation.
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Figure 6: Estimated value distributions for auction participants

Notes: The bidder value distribution FB is estimated via the maximum likelihood approach in 4.1 using a 5-component Gaussian
mixture model for log values. The seller outside option distribution FS is fit to imputed seller values among experienced sellers,
as in 4.2, and uses a 5-component Gaussian mixture model for seller values.

The estimated seller value distribution largely first-order stochastically dominates the estimated

bidder value distribution. Since the population of sellers is the group of users who have previously

acquired Beanie Babies, it is reasonable for them to have a higher value distribution for these items

than any random bidder. However, this difference in value distributions is not unreasonably large:

the seller value distribution largely falls between distributions of the maximum value of two bidders

and that of three bidders (which are not plotted here), so it may be profitable in expectation for a

seller with a large v̂0j to list an item for sale.

I now turn to the estimates of new sellers’ beliefs and their learning process. I estimate the

model on a sample of all sellers with at least 5 auctions, to have a population of “serious” sellers

who have more than a couple items to sell. I also limit the sample to the first 5 auctions of all such

sellers to not bias the estimates with subsequent exit of some of these sellers. The estimated prior

parameters are shown in Table 2, for two cases where only the arrival coefficient δ0,2 is unknown to

new sellers (version (a)) and for the general case where both parameters in δ0 are unknown (version

(b)). In both cases, the prior mean for the reserve price coefficient δ0,2 is higher than the estimated

parameter -0.245, implying that new sellers’ beliefs about bidder arrival are upwardly biased, and

particularly so for auctions with high reserve prices. The marginal beliefs about δ0,2 are similar

across both specifications, with a moderately dispersed prior that allows for some learning, though
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it is far from immediate.

Table 2: Estimated new seller priors about the bidder arrival process

(a) (b)

Parameter δ0,2 δ0,1 δ0,2

Prior Mean -0.042 0.661 -0.022
(1.7e-5) (3.2e-5) (1.4e-5)

Prior Std. Dev. 0.317 1.0 0.248
(2.6e-5) (4.6e-5) (1.4e-5)

Prior Correlation - 0.091 -
(1.9e-5)

Notes: The model is estimated on the first 5 auctions of all 3,975 new sellers that list at least 5 auctions for
sale. Version (a) treats the intercept parameter δ0,1 as known by all new sellers, so the only uncertainty is about
the arrival coefficient. Version (b) treats both parameters as unknown to new sellers. For this approximation,
prior standard deviations are bounded from above by 1. Standard errors are naive standard errors, treating seller
value distribution parameters as known (standard error correction for two-step estimation in progress).

To help interpret the estimated prior parameters in Table 2, I simulate the path of new sellers’

average beliefs about the unknown parameter δ0 for the case where both parameters are unknown.

Figure 7 plots ellipses corresponding to the estimated beliefs of new sellers, though the contours

correspond to a 0.1-standard deviation interval (rather than a conventionally-sized credible interval)

for clarity. The prior mean drifts toward the true parameters as new sellers learn from successive

auctions. While most of the shift is due to an upward correction in seller beliefs about δ0,1, the

posterior mean begins to curve toward the true parameter δ0.
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Figure 7: Estimated path of average new seller beliefs

Notes: The ellipses represent the average beliefs of new sellers in their first 5 auctions, conditioning on all 3,975 new sellers who
list at least 5 auctions. The contours represent a 0.1-standard deviation around the mean of the belief distribution.

Finally, I directly show the effect of seller beliefs on selective entry by plotting the average seller

entry threshold for new sellers relative to the experienced seller entry threshold. Figure 8 shows

how the experienced sellers’ entry threshold is increasing in the expected arrival rate, where the

entry threshold is evaluated at the mean of the estimated entry cost distribution FcES
. The entry

threshold is significantly higher among new sellers in their first auction. This is consistent with

Table 2: in spite of the lower prior mean for δ0,1 (relative to the true parameter), its high variance

combined with the higher prior mean for δ0,2 makes entry attractive to new sellers. This relative

ordering of entry thresholds is consistent with the selection pattern in Figure 4, where new sellers

that exit early also set higher reserve prices in their first auctions.
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Figure 8: Estimated average seller entry threshold conditional on baseline bidder arrival parameter
δj,0,1

Notes: The estimated entry threshold is evaluated at the mean of the estimated entry cost distribution, conditional on the log of
the expected number of bidders for ρ(r) = 0.

5 Platform information problem

I now use the estimated model to study the problem of information provision by the platform.

There is a unit mass of sellers on the platform, where ω is the share of new sellers with beliefs b0

about the bidder arrival process, and 1− ω is the share of experienced sellers with accurate beliefs

about the bidder arrival process. For simplicity, I treat this as a one-stage problem where each

seller lists a single item and no additional sellers join the platform.

I assume the platform can choose the seller-facing fees cPS and cES as well as the number of

auctions a in a dataset Da that it shows to new sellers before they list their first item.8 The

platform can only truthfully reveal information from auctions that have previously occurred, and

therefore provides a random subsample Da of recent auction data to new sellers to update their

priors from b0 to T (b0,Da). I use the shorthand a =∞ for the platform sharing all of its data with

new sellers; this is equivalent to the platform providing an automated pricing tool to all sellers. This

data is drawn i.i.d. from the distribution FD of all auction data owned by the platform. Formally,

8I treat bidder-facing fees cPB as being fixed at zero. This is motivated both by the fee being equal to zero for
bidders in the data, as well as analysis by Marra (2019) on a wine auction platform indicating that increasing revenue
while maintaining transaction volume requires setting cPB < 0.
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the platform’s profit maximization problem is

max
cPS , cES , a

∫ ∫ (
ω

∫
FS(v̄(T (b0,Da), c̃(z)))︸ ︷︷ ︸
P[Entry | Inexperienced]

·
[
cES + cPS ·

∫
R(r∗(v0 | δ, cPS ) | δ0)T (b0(δ),Da)dδ

]
︸ ︷︷ ︸

Platform revenue | entry

dFD(Da)

+ (1− ω) · FS(v̄(δ0, c̃(z)))︸ ︷︷ ︸
P[Entry | Experienced]

·
[
cES + cPS ·R(r∗(v0 | δ0, cPS ) | δ0)

]
︸ ︷︷ ︸

Platform revenue | entry

)
dFS(v0)dFcES

(z)− cPa · a

(11)

where cPa is the marginal cost of providing data from a auctions to each seller, and r∗(v0 | δ, cPS ) is

the optimal reserve price function conditional on sellers’ outside option v0, the arrival parameter δ,

and the sellers’ revenue fee. Throughout this exercise I set cPa = 0 to reflect the low marginal cost

of providing additional data, assuming it has already been collected. Though it is likely that there

is significant fixed cost in providing sellers with data, I assume this cost is sunk and not relevant

for the platform’s problem.

The maximization problem in (11) highlights the importance of sellers’ beliefs in the platform’s

optimal information problem. The first line corresponds to the new sellers on the platform, each of

whom observes a dataset Da with a auctions before listing their first item. Each seller only chooses

to list an item if their updated beliefs T (b0,Da) about the bidder entry process imply it is optimal

to do so; conditional on entry, they will also choose a reserve price according to their beliefs. Thus,

knowledge of b0 is critical for understanding how any additional information Da will shift seller

beliefs and therefore behavior. The second line corresponds to experienced sellers, whose selective

entry and choice of reserve price are informed by their perfect information about the bidder entry

process. While these sellers are not directly affected by the platform’s information provision, they

must pay the revenue fee cPS which is chosen by the platform jointly with its dataset length a. Thus,

the fee paid by experienced sellers is influenced by new sellers’ beliefs about bidder entry and how

much information new sellers receive from the platform.

I now compute the expected platform profit for different cPS , cES , and a. To fix ideas, I set

ω = 0.5 as the fraction of sellers who are new, so a large portion of users may be affected by the

platform providing additional information. In Figure 9, I plot the estimated effect of alternative

fee structures without information provision (i.e., a = 0) on various outcomes of interest. As may

be expected, the largely platform gains from higher fees while the sellers would prefer lower fees.
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Also, higher fees reduce the probability that sellers list items on the platform, which contributes

to the lower number of bidders.

Figure 9: Percent changes in outcomes under alternative fee structures, a = 0

(a) Platform revenue (b) Number of bidders

(c) Seller surplus (d) Seller participation rate

Notes: Each scenario was evaluated form a grid of possible fees, simulating 1,000 sellers for each combination of
parameter values. Green (red) squares represent a percentage increase (decrease) in a given outcome relative to
the outcome under the baseline values of cPS and cES ; each panel depicts changes between -60% and 60%.

To highlight the role of information provision in this setting, I contrast the benchmark of a = 0

with a = ∞: the platform provides all information about the data-generating process to sellers.

Table 3 compares outcomes under the two information regimes. The first row, which is Pareto

optimal for a = 0, is the baseline fee structure in the data.9 The Pareto optimal fee structure under

a = ∞ yields strictly better platform and seller outcomes, and even gives a marginal increase in

the number of bidders using the platform.

9Since bidders have a zero profit condition that determines entry, in expectation no bidder’s welfare will be changed
by these regimes. To compare bidder outcomes to those of sellers and the platform, I measure the average number
of bidders that enter an auction on the platform. Any “Pareto” improvement in this exercise must maintain at least
the same number of bidders as under the baseline fee structure.
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Table 3: Platform-optimal and Pareto-optimal fees under different information provision

a Objective cPS cES Platform revenue Seller surplus Number of bidders

0 Pareto 0.05 0.075 0.093 0.237 4.01
0 Platform 0.2 0.075 0.134 0.135 2.82
∞ Pareto 0.125 0.025 0.102 0.243 4.05
∞ Platform 0.2 0.05 0.128 0.202 3.14

Notes: Platform revenues and seller surplus are measured per potential seller. The two objectives are “Platform”
(maximizing platform revenues) and “Pareto”, which I define to be the platform-revenue maximizing fee structure
such that platform revenues, seller surplus, and the number of bidders are at least as great as the benchmark
case.

Interestingly, platform revenue is highest in the case where a = 0, or the platform shares no

information with new sellers. Since uninformed sellers are on average more willing to list an item

for auction (see Figure 8), the platform can increase entry fees relative to the full-information

setting. While this exercise abstracts from dynamic considerations, including both subsequent

learning by existing sellers and additional entry by new users, it suggests that full, free information

will not always be chosen by profit-maximizing platforms. Despite platforms’ incentives to serve as

a matching mechanism and facilitate a large volume of transactions, some user uncertainty may be

optimal.

6 Conclusions

This paper studies the problem of information provision by an auction platform where sellers face

uncertainty about the bidder arrival process. I first present evidence that new sellers learn to set

optimal reserve prices as they gain more experience. I pair a model of seller learning with a model

of two-sided endogenous entry onto an auction platform to investigate how new seller behavior

is driven by both selection and learning. The model implies a new reserve price formula that is

designed to both attract bidders to the auction and extract surplus from them; failure to account for

the negative effect of high reserve prices on bidder entry leads new sellers to set higher-than-optimal

reserve prices. I show that sellers’ beliefs about the bidder arrival process can be semiparametrically

identified from reserve price data under certain conditions, and estimate new sellers’ beliefs.

These results highlight platforms’ ability to influence user behavior outside of its well-known

ability to charge different fees to different sides of the market. Information provision improves
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the quality of the marketplace for sellers, who are able to better optimize their entry decisions and

pricing strategy. Sellers’ improved profits also increase platform profits through increased revenues,

and induce additional bidder entry through lower average prices on the platform. However, pro-

viding or witholding information may enhance the platform’s ability to extract revenue through

alternative fee structures.

38



References

Aguirregabiria, Victor, and Arvind Magesan. 2020. “Identification and estimation of dynamic games

when players’ beliefs are not in equilibrium”. The Review of Economic Studies 87 (2): 582–625.

Bronnenberg, Bart J, Jun B Kim, and Carl F Mela. 2016. “Zooming in on choice: How do consumers

search for cameras online?” Marketing science 35 (5): 693–712.

Bulow, Jeremy, and Paul Klemperer. 1996. “Auctions versus Negotiations”. American Economic

Review 86 (1): 180–94.

Chernozhukov, Victor, et al. 2022. “Locally robust semiparametric estimation”. Econometrica 90

(4): 1501–1535.

Cogley, Timothy, Riccardo Colacito, and Thomas J Sargent. 2007. “Benefits from US monetary

policy experimentation in the days of Samuelson and Solow and Lucas”. Journal of Money,

Credit and Banking 39:67–99.

Compiani, Giovanni, et al. 2022. Online Search and Product Rankings: A Double Logit Approach.

Tech. rep. Working paper.

Davis, Andrew M, Elena Katok, and Anthony M Kwasnica. 2011. “Do auctioneers pick optimal

reserve prices?” Management Science 57 (1): 177–192.

Engelbrecht-Wiggans, Richard. 1987. “On optimal reservation prices in auctions”. Management

Science 33 (6): 763–770.
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A Appendix

A1 Summary statistics and additional descriptive evidence

Table A1.1 shows selected summary statistics for the sample used in the data. To limit the effect of

prediction error in estimated item values (described in more detail in 4.1), I drop all items with a

standardized reserve price and standardized revenue greater than the 99th quantile of the respective

variables.

Table A1.1: Summary statistics

Variable Mean Std. Dev. Minimum Maximum

Minimum Bid 13.85 48.43 0.01 10,000
Reserve Price 15.39 139.4 0 68,000
Revenue 15.66 83.5 0 68,000
# Bidders 2.62 2.93 0 36
Sell 0.55 0.5 0 1
Fees 1.05 1.97 0 867.12

Notes: These statistics are from the 1,038,383 items included in the analysis data. The top 1% of the items (by standardized
effective reserve price) have been removed from the analysis data.

Figure A1.1 estimates the same equation as Figure 2, but the dependent variables are the inverse

hyperbolic sine (IHS) of effective reserve price and net revenue. I also restrict the sample to items

where the seller has listed at least one other item with the same description, and run the regression

with predicted item values and item fixed effects to compare the resulting estimates. The trends

are quite similar whether using predicted item values or fixed effects, which suggests the predicted

item values capture economically meaningful information. They are also similar to the trends in

Figure 2, though with the caveat that the greater magnitude of the coefficients in panel (b) may

be in part driven by re-listed items that were not sold the first time.10

10One limitation of the dataset is that I cannot observe seller inventories, so I cannot see how many of the identical
items are true duplicates as opposed to relisting.
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Figure A1.1: Regression coefficients αk of auction experience on variables of interest

(a) IHS(Effective reserve) (b) IHS(Net revenue)

Notes: These regressions pool 1,639 new sellers’ first 15 auctions with all auctions by 5,165 experienced sellers
(defined as those with ≥47 auctions at the start of the data, which is the 75th percentile of initial experience).
The sample is limited to sellers with at least 15 auctions in the data. The results are similar when using different
values of TNew.

Figure A1.2 shows the words that most increased and decreased in their usage by new sellers in their

first 15 auctions. While the trends are largely small, the words that most increased in frequency

include “nr” (short for “no reserve”) and “no” “reserve”. This is consistent with sellers becoming

more aware of the possible effect of their pricing decisions on bidder entry.

Figure A1.2: Trends in the frequency of words in item descriptions

Notes: These are the 10 most positive and 10 most negative (by absolute value) coefficients when regressing 1[item contains word]
on the inverse hyperbolic sine (IHS) of new sellers’ auction number (among the first 15 auctions of sellers who have at least 15
auctions in the data or sellers with >75th percentile of experience at the start of the data), along with predicted item value,
IHS(feedback count), feedback percentage, and seller and month fixed effects.

Figure A1.3 shows additional trends in non-price variables among sellers with at least 15 auctions.

New sellers show some trends in the timing of an auction (panels (b) and (c)), where they favor

shorter auctions that end on weekends. As shown in panel (d), new sellers also become less likely
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to feature items. To ensure that estimation is computationally tractable, and since these trends are

generally smaller in magnitude relative to the baseline averages of each variable, I focus attention

on the choice of reserve prices.

Figure A1.3: Trends in non-price variables among new sellers

(a) End time in evening (b) End time on weekend

(c) Auction length (days) (d) Featured item

(e) Has secret reserve

Notes: These figures display coefficients of the first 15 auctions of new sellers in a regression of the various
outcomes on predicted item values, seller feedback scores, inverse hyperbolic sine (IHS) of auction experience,
and seller and month fixed effects. The regression is on new sellers with at least 15 auctions in the data and
experienced sellers (defined as sellers with >75th percentile of experience at the start of the data).

Figure A1.4 estimates similar regressions for bids within auctions, though with the number of

observed bids in each auction additional control. Panel (a) shows the trends in first and second
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highest bids faced by new sellers, since these are the only bids known to reflect the first and second

highest values in an ascending IPV setting. Panel (b) shows the trend in bids placed by new sellers

on other listings on or before their kth listing. The trend lines for both figures are relatively noisy

and generally flat, though there is a slight upward trend in the bid values for auctions with 2 or

more bidders in panel (a).

Figure A1.4: Regression coefficients αk of auction experience on bids

(a) Trends in bids faced by new sellers (b) Trends in bids placed by new sellers

Notes: These regressions pool bids from 1,639 new sellers’ first 15 auctions with bids from all auctions by 5,165
experienced sellers (defined as those with ≥47 auctions at the start of the data, which is the 75th percentile of
initial experience). The sample is limited to sellers with at least 15 auctions in the data. Panel (a) restricts the
sample to all auctions with at least 1 or 2 bids (as specified in the legend), and panel (b) examines bids placed
by new sellers before they list their kth item. Both panels control for seller fixed effects as in section 2.2, as well
as fixed effects for the number of other observed bids in each auction.

A2 Proofs and derivations

Proof of Proposition 1

This closely follows the corollary in Marra (2019), though with the caveat that r is observed in this

setting and thus directly impacts the Poisson mean Λ. First, denote

πB(r | n, c) =
1

n
· E
[
vn:n − (1 + cPB) max{v(n−1):n, r

∗}
∣∣∣ vn:n ≥ rB

]
· (1− FB(rB)n)

Since FB satisfies the strict monotone hazard rate property, Li (2005) implies that E[v(n+1):(n+1)−

vn:(n+1)] < E[vn:n − v(n−1):n]; this holds when conditioning on r since r is set before the auction

and does not vary with the number of bidders n that arrive. Additionally, 1
n(1 − FB(r)n) ≥
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1
n+1(1− FB(r)n+1),11 so πB(r | n) is decreasing in n.

We temporarily abuse notation to write the probability mass at n given Λ as pn(Λ). Since arrival

is Poisson, pn(Λ′) first-order stochastically dominates pn(Λ) for Λ′ > Λ. Increasing Λ therefore

decreases
∑NB−1

n=1 πB(r | n, c)pn(Λ) since πB(r | n) is monotonically decreasing in n. Thus, there

exists a unique Λ that solves the zero profit condition.

Similarly, πB(r | n, c) is decreasing in r, since the measure of the set {vn:n ≥ rB}, the probability

of winning 1−FB(rB)n, and the winner’s expected surplus are all all decreasing in r. Since higher

r corresponds to strictly lower surplus, Λ is strictly decreasing in r.

Proof of Proposition 3

We differentiate the first-order condition with respect to v0:

∂2Π(v0, r | b, c)
∂r∂v0

= (1− cPS )Rrr(r
∗(v0))

∂r∗(v0)

∂v0
+Kr(r

∗(v0) | b) + v0Krr(r
∗(v0))

∂r∗(v0)

∂v0

Rearranging, we have

∂r∗(v0)

∂v0
=

Kr(r
∗(v0) | b)

−[(1− cPS )Rrr(r∗(v0)) + v0Krr(r∗(v0))]

The denominator is positive at the interior optimum because it is the negative second-order condi-

tion of the seller’s profit maximization problem. Thus, ∂r∗

∂v0
when Kr(· | b) > 0. Further, since the

inverse of an increasing function is itself increasing, the virtual type function ψ(· | b, c) is monotonic

increasing.

Lemma 1. Let pn(x | δ) = 1
n! exp(−Λ(x | δ))Λ(x | δ)n, where Λ(x | δ) = exp(δ1 + δ2ρ(x)) and and

ρ(x∗) = 0. Then for each k = 1, 2, ..., ∂k

∂xk
pn(x∗ | δ) has the form

k∑
`=0

δ`2 · h`,k

(
n, δ1,

{ ∂t

∂xt
ρ(x∗)

}k−`+1

t=1

)
11To see this, first note that FB(r) ∈ [0, 1], and the expression is equivalent to showing (1 + 1

n
) 1−FB(r)n

1−FB(r)n+1 ≥ 1.

Let x ∈ [0, 1], and note that 1− xn = (1− x)bn, where bn ≡
∑n−1
k=0 x

k. Then 1−xn
1−xn+1 = bn

bn+xn
= 1

1+ xn

bn

, and 1
n
≥ xn

bn
,

since
∑n−1
k=0 x

k ≥
∑n−1
k=0 x

n.
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where each h`,k is known.

Proof

We first show that for every k = 1, 2, ..., ∂k

∂xk
pn(x | δ) has the form

k∑
`=0

δ`2 · h̃`,k

(
n,Λ(x | δ),

{ ∂t

∂xt
ρ(x)

}k−`+1

t=0

)

for known h̃`,k. Beginning with k = 1, note that

∂1

∂x1
pn(x | δ) = δ2 · pn(x | δ) · [n− Λ(x | δ)] · ρ′(x)

≡ δ2 · h̃1,1(n,Λ(x | δ), ρ′(x))

since pn is a known function of Λ. Now suppose ∂k

∂xk
pn(x | δ) has the form above. Then using the

shorthand h̃j,`,k to denote the first derivative with respect to the jth argument of h̃`,k, note that

by the chain rule,

∂

∂x

k∑
`=0

δ`2 · h̃`,k

(
n,Λ(x | δ),

{ ∂t

∂xt
ρ(x)

}k−`+1

t=0

)

=
k∑
`=0

δ`2 ·

[
h̃2,`,k

(
n,Λ(x | δ),

{ ∂t

∂xt
ρ(x)

}k−`+1

t=0

)
· Λ(x | δ) · ρ′(x) · δ2

+ h̃3,`,k

(
n,Λ(x | δ),

{ ∂t

∂xt
ρ(x)

}k−`+1

t=0

)ᵀ{ ∂t+1

∂xt+1
ρ(x)

}k−`+2

t=1

]

≡
k+1∑
`=0

δ`2 · h̃`,k+1

(
n,Λ(x | δ),

{ ∂t

∂xt
ρ(x)

}k−`+1

t=0

)

Evaluating the expression above at x∗, where ρ(x∗ = 0) and therefore Λ(x∗ | δ) = exp(δ1), yields

the desired result.

Proof of Proposition 5

By assumption (i), restricting attention to all sellers with the same history H is equivalent to

restricting attention to sellers with identical beliefs b.

By Proposition 3, ψ(· | b, c) is increasing. Using the seller first-order condition, a change-of-variables
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can be applied to the reserve price distribution to write it in terms of the virtual type function and

the known seller value distribution:

P[r ≤ x] = P[v0 ≤ ψ(x | b, c)] = FS(ψ(x | b, c))

Further, the selection rule for seller entry implies v̄(b, c) ≥ v0. Taken together, the probability that

a reserve price is less than or equal to x, conditional on beliefs b and cost vector c, is FS(ψ(x |

b, c))/FS(v̄(b, c)). Since by assumption (ii) the entry threshold v̄(b, c) is known, inverting the

empirical reserve price distribution φ(x | H) of sellers with history H yields the virtual type

function:

ψ(x | b, c) = F−1
S

[
φ(x | H) · FS(v̄(b, c))

]

for all x such that ψ(x | b, c) < v̄(b, c). By assumption (iv) this support includes a positive-measure

interval including some value x∗ for which ρ(x∗) = 0; in what follows we restrict attention to this

interval.

The virtual type function ψ(x | b, c) is proportional to the ratio of Rr(x | b) and Kr(x | b), and its

derivatives are

∂k

∂xk
ψ(x | b, c) = −(1− cPS )

∂k

∂xk
Rr(x | b)
Kr(x | b)

= −(1− cPS )

k∑
`=0

(
k

`

)( ∂k−`
∂xk−`

Rr(x | b)
)
·
( ∂`
∂x`

(
Kr(x | b)

)−1)

where by Faà di Bruno’s formula

∂`

∂x`
(
Kr(x | b)

)−1
=
∑̀
t=0

(−1)t · t!
(Kr(x | b)t+1)

B`,t

( ∂
∂x
Kr(x | b), ... ,

∂`−t+1

∂x`−t+1
Kr(x | b)

)

in which B`,t are Bell polynomials. In turn, for both functions G ∈ {R,K}, we have

∂k

∂xk
G(x | b) =

k∑
`=0

(
k

`

)( ∞∑
n=0

( ∂k−`
∂xk−`

Gn(x)
)
·
( ∂`
∂x`

pn(x | b)
))

Thus, the kth derivative of the virtual type function is a known function of the 0,...,kth derivatives

of Rn, Kn, and pn.
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We now turn our attention to the Poisson mass function and its derivatives, which are the only

arguments of ξk that depend on beliefs b. Expanding ∂k

∂xk
pn(x | b) and imposing independence

between the marginal beliefs about the two parameters yields

∂k

∂xk
pn(x | b) =

∫ ∫ [
∂k

∂xk
pn(x | δ)

]
bδ1(δ1)bδ2(δ2)dδ1dδ2

Evaluating this at x∗ and applying Lemma 1, this can be expanded to yield

k∑
`=0

Ebδ2 [δ`2] · ĥ`,k(n)

where ĥ`,k(n) ≡
∫
h`,k(n, δ1, { ∂

t

∂xt ρ(x∗)}k−`+1
t=1 )bδ1(δ1)dδ1 is known under the assumption that bδ1 is

known. Note that Ebδ2 [δ`2] does not depend on n, so this term can be pulled out of all the infinite

sums in which it appears, i.e. for G ∈ {R,K}

∂k

∂xk
G(x∗ | b) =

k∑
`=0

(
k

`

)( ∞∑
n=0

( ∂k−`
∂xk−`

Gn(x∗)
)
·
(∑̀

t=0

Ebδ2
[δt2] · ĥt,`(n)

))

= Ebδ2
[δk2 ]

( ∞∑
n=0

Gn(x∗)ĥk,k(n)

)
+

k−1∑
`=0

(
k

`

)( ∞∑
n=0

( ∂k−`
∂xk−`

Gn(x∗)
)
·
(∑̀

t=0

Ebδ2
[δt2] · ĥt,`(n)

))

Note the k − 1th derivative of the virtual type function is a function of the kth raw moment of

bδ2 . By assumption, the k − 1th derivative of ψ(x∗ | b, c) is invertible in the coefficient of this

first term, yielding identification of the kth raw moment from the k − 1th derivative of ψ(x∗ | b, c)

and knowledge of lower-order moments. Since bδ2 satisfies the Carleman condition, its moments

uniquely characterize the distribution, and bδ2 is identified up to the k̄th moment.

A3 Demand estimation details

I use text data from item descriptions to estimate the average value for each item. Since item

descriptions are seller-provided, there is significant variation in how words are spelled, which poses

a challenge for tractably estimating item values. To address this, I manually created a crosswalk

of individual words to their apparent intended word to decrease the dimensionality of the space

item descriptions (e.g., replacing “beaneis” and “babys” with “beanies” and “babies”). I then

constructed a dictionary of the 5,368 words that appear at least 10 times in the cleaned item
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descriptions. I also include indicators for each month in the dataset.

I tested multiple neural network architectures for γ via out-of-sample validation and with built-

in dropout layers to find the architecture that achieved the lowest out-of-sample loss using the

likelihood derived in A5. In particular, I use 80% of the sample to train the model, 10% of the

sample to test out-of-sample loss during training, and the remaining 10% of the sample for out-of-

sample validation after training. I used an early stopping rule to determine the number of epochs

with which to train the full model: I use the smallest number of epochs after which the testing loss

fails to improve for 10 consecutive epochs. I then select the architecture with the lowest validation

loss. The resulting architecture has 9,111,233 parameters; additional information on the various

architectures is presented in Table A3.1. This table shows that the nonparametric specifications

outperform the parametric model in the first line of the table. Larger numbers of parameters

generally improve validation loss, though there are diminishing returns to increased complexity.

The empirical results of the paper are similar using different architectures.

Table A3.1: Neural network architectures and performance

Model # 1st-Layer Nodes # Parameters Train Loss Test Loss Val Loss Epochs R2

1 - 5,374 2.6013 2.6165 2.6104 46 0.691
2 512 2,900,321 1.0885 1.2647 1.2680 34 0.984
2 1,024 5,782,881 0.9965 1.2264 1.2374 38 0.992
2 1,536 8,665,441 1.0006 1.2316 1.2752 30 0.989
3 512 3,083,969 1.0509 1.2638 1.2791 47 0.987
3 1,024 6,097,601 0.9144 1.1934 1.2007 43 0.993
3 1,536 9,111,233 0.8590 1.1774 1.1933 46 -

Notes: Model 1 is fully parametric, with a Gaussian distribution for log-values and no hidden nodes
(i.e., log-values are modeled as a linear combination of word-specific fixed effects). Models 2 and 3 both
use 5-component Gaussian mixture models, with a varying number of nodes in the first hidden layer;
both have 4 hidden layers with corresponding dropout of 50%, 40%, 30%, and 20% for each. The second
through fourth hidden layers contain 256, 64, and 16 nodes for model 2 and 512, 128, and 32 nodes for
model 3. The number of parameters is the total number of trained parameters in each specification. The
train, test, and validation loss columns denote the loss of each of the 80%, 10% and 10% samples used
in comparing each of the models. The number of epochs is chosen via early stopping, since subsequent
training after the listed number of epochs yields no test loss improvement for at least 10 epochs. The
R2 is taken from regressing the fitted item values from each architecture on the architecture with the
lowest validation loss.

A4 Orthogonalization of the likelihood function

This section derives a method to estimate the true parameter ϑ0 without bias due to estimation

error for the nonparametric component γ0. I denote the log-likelihood as `; its derivation is shown
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in the following section. All relevant data for this demand-side likelihood is abbreviated as Dd to

differentiate it from the data D that is used by sellers in updating their beliefs.

Denote the score function for the structural parameters ϑ0 as

g(ϑ | γ,Dd) =
∂`(ϑ, γ | Dd)

∂ϑ

and note that E[g(ϑ0 | γ0,Dd)] = 0. To derive a Neyman orthogonal score g∗(ϑ | γ,Dd) for

the average score E[g(ϑ0 | γ0,Dd)], Ichimura and Newey (2022) provide a method for finding a

candidate first-stage influence function that will be added to the original score. I follow the steps

in their Proposition 1 to show how this applies to a setting with both low and high dimensional

parameters, where we orthogonalize with respect to the high dimensional parameter.

By way of notation, γ0 as the true high-dimensional parameter under the true distribution function,

and γτ is the perturbation in the direction of some alternative γ̃ (i.e., γτ = (1 − τ)γ0 + τ γ̃). The

Gateaux derivative ∂
∂τ is the derivative with respect to τ from above evaluated at zero (τ ↓ 0). I

assume that E[ ∂∂a
∂
∂a`(ϑ, γ(X) + a | Dd) | X = x] = 0, which implies E[b(X)`(ϑ, γ(X) + a | Dd) |

X = x] = 0 for all b.

In this setting, Assumptions 1 and 2 of Ichimura and Newey (2022) are that there exist α1(ϑ | x)

and α2(ϑ | x) with finite variance (and where α2 is bounded away from zero) such that

∂

∂τ
E

[
∂

∂ϑ
`(Dd, ϑ, γτ (X))

]
=

∂

∂τ
E

[
α1(ϑ | X)γτ (X)

]
∂

∂τ
E

[
b(X)

∂

∂γ
`(Dd, ϑ, γτ (X))

]
=

∂

∂τ
E

[
b(X)α2(ϑ | X)γτ (X)

]

By the chain rule and iterated expectations on the score above, we have

α1(ϑ | x) = E

[
∂g(ϑ | a,D)

∂a

∣∣∣
a=γ(X)

∣∣∣∣∣X = x

]

α2(ϑ | x) = E

[
∂2`(ϑ | a,D)

∂a2

∣∣∣
a=γ(X)

∣∣∣∣∣X = x

]
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Writing the derivative of the likelihood with respect to the scalar output of γ as

g̃(ϑ | γ,D) =
∂`(ϑ | a,D)

∂a

∣∣∣
a=γ(X)

we can combine these terms to form the orthogonal score

g∗(ϑ | γ,Dd) = g(ϑ | γ,Dd)− α1(ϑ | x) · α2(ϑ | x)−1 · g̃(ϑ | γ,D) (12)

This orthogonal score may then be used to estimate θ while removing bias due to the plug-in

estimator γ0.

The nuisance parameters α1 and α2 are projections of second derivatives of ` onto the space of

covariates X that enter γ. Unlike regression settings, each depends on the structural parameters ϑ;

this is similar to Example 3 of Chernozhukov et al. (2022). As in that setting, initial estimators γ̂

and θ̂ can be constructed using sample splitting, and then plugged into α1 and α2 to get predicted

values and estimate the conditional expectations α̂ using nonparametric regression on X. These

“plugin” estimators form the nuisance parameter α̂(x) = α̂1(ϑ̂ | x) ·α̂2(ϑ̂ | x)−1 that yields a version

of equation (12) that will be used in estimation (I omit the multiple indices used in sample splitting

for ease of exposition):

g∗(ϑ | γ,Dd) = g(ϑ | γ,Dd)− α̂(x) · g̃(ϑ | γ,Dd)

This orthogonal moment can be used as in standard GMM both to estimate ϑ without bias and

construct the asymptotic variance matrix of the structural parameters. I follow the steps in Cher-

nozhukov et al. (2022) with threefold sample splitting.

A5 Likelihood derivation: demand side

I now derive the demand side likelihood as presented in equation (10). Subscripts for j and t will

be omitted where possible (since this focuses on the likelihood contribution for any given auction),

as well as the dependence on parameters ϑd, to streamline notation.
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The likelihood that no bids are observed is simply the likelihood that the highest bid (integrated

over the arrival distribution) is smaller than the minimum bid. Thus, the likelihood contribution

for observing no bids is

∞∑
n=0

Λne−Λ

n!
FB(m)n︸ ︷︷ ︸

P[all bids below m]

=

= e−Λ[1−FB(m)]
∞∑
n=0

[ΛFB(m)]ne−[ΛFB(m)]

n!

= e−Λ[1−FB(m)]

where the third equality holds since the sum is the integral of a Poisson density with mean

ΛFB(m).

The likelihood contribution from auctions with one observed bidder uses the fact that one bid is

not censored, but the other n− 1 are. For any n bidders that arrive,

∞∑
n=1

Λne−Λ

n!
nFB(m)n−1fB(v(1))︸ ︷︷ ︸
P[only 1 bid above m]

=

=
fB(v(1))

FB(m)
e−Λ[1−FB(m)]

∞∑
n=0

[ΛFB(m)]ne−[ΛFB(m)]

n!
n

= fB(v(1))Λe−Λ[1−FB(m)]

where the second equality holds since the summand is 0 for n = 0, and the last equality holds since

the sum is the first moment of the Poisson distribution with mean ΛFB(m).

The last case, where Nj ≥ 2, combines all possible arrival orders with at least 2 bidders. The

precise values of other bidders are not necessary to construct the partial likelihood; the two highest
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bids provide enough information about the arrival process.

∞∑
n=2

Λne−Λ

n!
fB(v(1) | v(2))fB(v(2) | n bids)︸ ︷︷ ︸

P[2 highest bids]

=

= fB(v(1) | v(2))
∞∑
n=2

Λne−Λ

n!
n(n− 1)(1− FB(v(2)))FB(v(2))n−2fB(v(2))

= fB(v(1) | v(2))
(1− FB(v(2)))

FB(v(2))

fB(v(2))

FB(v(2))
e−Λ[1−FB(v(2))]

·
∞∑
n=0

[ΛFB(v(2))]ne−[ΛFB(v(2))]

n!
(n2 − n)

= fB(v(1))fB(v(2))Λ2e−Λ[1−FB(v(2))]

where the third equality follows since n2 − n = 0 for n = 0, 1, the fourth equality comes from the

difference of the first and second raw moments of the Poisson distribution and further simplification.

Combining the likelihood component of each case (N = 0, N = 1, or N ≥ 2) with the density of

the reserve price, we obtain equation (10).

Test with simulated data

For the simulations, I use a modified version of the data-generating process various architectures

for the item value index γ. In the first architecture, I assume item j’s log-value γj is known (i.e.

γ(γj) = γj). In the following, I assume item values are a function of 50 indicator variables, each

of which is randomly generated with average probability 0.1. I allow item values to be generated

from a dense neural network (mapping from 50 indicator variables to two hidden layers of 10 nodes

each before outputting to a scalar).

The number of bidders is Poisson distributed with mean Λj = exp(δ0,1 + δ0,2γj), so in these

simulations bidder arrival does not depend on the reserve price. I also set m = r in the simulations,

so the minimum bid and reserve price are the same. I model rj ∼ N (µr, σ
2
r ) and vij ∼ N (0, σ2

B). I

report the results for this set of simulations in Table A5.1.
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Table A5.1: Simulations for maximum likelihood estimation (demand)

Regression: γ0 on γ̂ Structural Parameters

Intercept Coef σ2
B µr σ2

r δ0,1 δ0,2

True values 0.0 1.0 0.5 0.25 0.5 1.0 0.5

Known γ0

N = 2,000 - - 0.498 0.251 0.499 1.019 0.469
- - (0.009) (0.012) (0.008) (0.031) (0.047)

N = 10,000 - - 0.5 0.25 0.5 1.022 0.473
- - (0.004) (0.005) (0.004) (0.012) (0.02)

Estimated γ0 (uncorrected)

N = 2,000 0.002 0.976 0.501 0.261 0.491 1.095 0.748
(0.112) (0.091) (0.06) (0.112) (0.02) (0.155) (0.164)

N = 10,000 0.031 1.099 0.55 0.283 0.528 1.049 0.749
(0.055) (0.04) (0.05) (0.087) (0.014) (0.088) (0.108)

Estimated γ0 (orthogonalized)

N = 2,000 -0.022 0.91 0.661 0.235 0.625 0.809 0.163
(0.134) (0.119) (0.098) (0.136) (0.042) (0.243) (0.296)

N = 10,000 0.035 1.069 0.59 0.273 0.556 0.985 0.554
(0.07) (0.054) (0.062) (0.101) (0.021) (0.105) (0.153)

Notes: Average (standard deviation) parameters are from 100 simulations for each case. Starting values
were chosen randomly using Julia’s Flux package initializations.

A6 Likelihood approach: supply side belief estimation

Several functions (e.g. R, K, and their derivatives with respect to r, and expectations with respect

to belief densities or bidder values) involve multiple integrals and/or summations, and are therefore

infeasible to compute repeatedly for all possible parameters ϑs (the parameters of the seller value

and cost distributions) and ϑb (the parameters of the seller prior beliefs). I use dense neural

networks to approximate several functions used in the estimation procedure.

Each neural network maps from RQ to R, and each is composed of one input layer, 9 hidden layers,

and one output layer. The activation function for each hidden layer is leakyrelu, and the number of

nodes from input layer to output layer for each neural network is: Q, 50, 100, 100, 200, 300, 3000,

300, 200, 100, 100, 50, 1. The activation function for the output layer is listed with the associated

function below.

To construct each approximation, I generate datasets on which to train each neural network for

various parameter values. The bounds of each variable used in the approximations are chosen to

cover the empirical support of the corresponding variables where they are observed (e.g., δj,0,1)
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and sufficiently large support where they are unobserved (e.g. seller prior parameters). I use 99%

of each dataset for training and 1% for holdout validation. I train each neural network on the

respective training datasets in batches of 50 for 50 epochs before training the network on the full

training dataset for 25 epochs; I exit training early if the mean square error of the holdout sample is

less than 1e-5. The approximations (in bold) are constructed in the following order, with additional

details listed for each approximation and the construction of the associated datasets. Each function

is fit by minimizing mean square prediction error, though in some cases transformations are applied

to improve accuracy for some parameter values.

1. Functions with δ known.

(a) Evaluate revenue and keep probabilities. Using the estimated bidder value distribution

and arrival parameters, I first evaluate Rn and Kn for n = 0, 1, ..., 150. I then construct

316 Chebyshev nodes in each dimension for r ∈ [0.01, 6.25] and Λ ∈ [−5, ln(150)] and

evaluate R and K, respectively, by taking their dot product with {pn(r,Λ)}150
n=0 evaluated

at each node (I chose 316 because Floor(100,0000.5) = 316).

i. Expected revenue R (exponential activation). Inputs: r and δj,0,1.

ii. Keep probability K (sigmoid activation). Inputs: r and δj,0,1.

(b) Search for optimal reserve price. I construct 316 Chebyshev nodes in each dimension

for v0 ∈ [−1.25, 6.25] and δj,0,1 ∈ [−5, ln(150)] and search for the optimal reserve price

r∗ in 0.01, 0.02, ..., 6.25 along with the expected profit and seller surplus (profit minus

outside option value) at the optimum.

i. Virtual type ψ (identity activation). Inputs: r∗ and δj,0,1.

ii. Optimal reserve price ψ−1 (identity activation). Inputs: v0 and δj,0,1.

iii. Expected surplus Π∗ − v0 (exponential activation) Inputs: v0 and δj,0,1. Since

expected surplus is positive when entry costs are zero, I minimize the mean square

prediction error of the log expected surplus. This increases the relative accuracy

of predicted expected surplus where it is small, which is important for precisely

approximating the entry threshold in the next step.

(c) Entry threshold. I then construct 316 Chebyshev nodes in each dimension for cE ∈

[0, 0.5] and δj,0,1 ∈ [−5, ln(150)] and search for the maximum v0 ∈ [−1.25, 6.25] such
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that expected surplus is weakly positive. Since expected surplus is monotonic in v0,

I use a binary search algorithm (i.e., evaluating expected surplus at the midpoint of

[−1.25, 6.25], determining whether v̄ lies above or below the midpoint, and iterating

with additional intervals) until the difference in successive iterations is less than 0.01.

i. Entry threshold v̄ (identity activation). Inputs: cE and δj,0,1.

2. Functions with δ unknown. I approximate the following functions for the full model with

2-dimensional unknown parameter δ0 and the arrival coefficient model where only δ0,2 is

unknown. The prior parameters are the mean {µ0,1, µ0,2}, standard deviations σ0,1 and σ0,2,

and correlation ρ̃0. Due to the higher dimensionality due to the belief parameters, I sample

100,000 input values for each step rather than constructing a grid of Chebyshev nodes. Unless

otherwise specified, each input is sampled uniformly on the stated support.

(a) Search for optimal reserve price. I sample v0 ∼ FS (bounded on [1.25, 6.25]), δj,0,1 ∼

U [−1.5, ln(150)], µ0,2 ∼ U [−0.75, 0.75], σ0,i ∼ U [0.01,
√

0.5] for i = 1, 2, and ρ̃0 ∼

U [−0.95, 0.95] (σ0,2 and ρ̃0 are only sampled for the full model). I then search for the

optimal reserve price r∗ in 0.01, 0.02, ..., 6.25 along with the expected profit and seller

surplus (profit minus outside option value) at the optimum, integrating over sellers’ belief

distributions to do so using Gauss-Hermite quadrature with 5 points in each dimension.12

i. Virtual type ψ (identity activation). Inputs: r∗, δj,0,1, µ0,2, σ0,1, σ0,2, ρ̃0.

ii. Optimal reserve price ψ−1 (identity activation). Inputs: v0, δj,0,1, µ0,2, σ0,1, σ0,2,

ρ̃0.

iii. Expected surplus Π − v0 (exponential activation). Inputs: v0, δj,0,1, µ0,2, σ0,1,

σ0,2, ρ̃0. As with step 2(c), I minimize mean square prediction error using the log

expected surplus.

(b) Entry threshold. I sample cE ∼ U [0, 1] (bounded on [1.25, 6.25]), δj,0,1 ∼ U [−1.5, ln(150)],

µ0,2 ∼ U [−0.75, 0.75], σ0,i ∼ U [0.01,
√

0.5] for i = 1, 2, and ρ̃0 ∼ U [−0.95, 0.95] (σ0,2 and

ρ̃0 are only sampled for the full model). I use the same binary search algorithm as in

1(c) to find v̄.

i. Entry threshold v̄ (identity activation). Inputs: cE , δj,0,1, µ0,2, σ0,1, σ0,2, ρ̃0.

12This procedure yields candidate quadrature nodes ln(Λ) at which I evaluate the expected revenue and keep
probaiblities. For ln(Λ) ∈ [−5, ln(150)] I use the evaluated Rn and Kn as in step 1(a) above, and for ln(Λ) 6∈
[−5, ln(150)] I extrapolate using the fitted values of R and K.
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(c) Updating process. I sample 200,000 draws of v0 ∼ FS (bounded on [1.25, 6.25]), Z ′λ ∼

U [−1.5, ln(150)], µ0,i ∼ U [−0.75, 0.75] for i = 1, 2, σ0,i ∼ U [0.01,
√

0.5] for i = 1, 2,

and ρ̃0 ∼ U [−0.95, 0.95] (σ0,2 and ρ̃0 are only sampled for the full model). I keep

100,000 draws for which δj,0,1 = Z ′λ + µ0,1 ∈ [−5, ln(150)]. I then use the optimal

reserve price function to construct r∗ and and the transformed reserve price ρ(r∗). I also

simulate profit signals ε as in equation (6) from N (0, σ2
Π), where σ2

Π is estimated using

the empirical difference between profit signals and expected profit among experienced

sellers.

I compute the updated beliefs via a Laplace approximation to the posterior for each

observation. I first use a resilient backpropogation algorithm to search for the new

maximum a posteriori estimates δ∗j,0,1 and µ∗0,2 given prior parameters, r∗, and ε. I

then evaluate the updated covariance parameters (σ∗0,1, σ∗0,2, and ρ̃∗0) by evaluating the

Hessian of the posterior evaluated at the maximum a posteriori estimate. I drop all

evaluations for which this algorithm returns either posterior parameters outside the

simulation bounds or an invalid covariance matrix, and evaluate the neural networks

using the resulting posterior parameters.

i. Updating means µ0,1 and µ0,2 (identity activation). Inputs: ε, δj,0,1, ρ(r∗),

µ0,2 · ρ(r∗), σ0,1, σ0,2, ρ̃0. Instead of approximating each updated parameter di-

rectly, I minimize mean square prediction error for the standardized difference

(µ∗0,i− µ0,i)/σ0,i for i = 1, 2; this ensures more accurate update steps for the sellers’

mean parameters when beliefs are more highly concentrated.

ii. Updating standard deviations σ0,1 and σ0,2 (identity activation). Inputs: ε,

δj,0,1, ρ(r∗), µ0,2 · ρ(r∗), σ0,1, σ0,2, ρ̃0. Instead of approximating each updated

parameter directly, I minimize mean square prediction error for the ratio (σ∗0,1)/σ0,i

for i = 1, 2; this ensures more accurate update steps for the sellers’ covariance

parameters when beliefs are more highly concentrated.

iii. Updating posterior correlation ρ̃ (identity activation). Inputs: ε, δj,0,1, ρ(r∗),

µ0,2 · ρ(r∗), σ0,1, σ0,2, ρ̃0. Instead of approximating the updated parameter directly,

I minimize mean square prediction error for the difference ρ̃∗0 − ρ̃0 for i = 1, 2.

I chose both ρ(r∗) and µ0,2·ρ(r∗) as inputs after experimenting with various architectures.
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